Introduction to MATLAB®

Lecture 2: Vectors and Matrices

Vectors and Matrices

- Vectors and matrices are used to store values of the same type
- A vector can be either column vector or a row vector.
- Matrices can be visualized as a table of values with dimensions $r \times c$ (*r* is the number of rows and *c* is the number of columns).

Creating row vectors

Place the values that you want in the vector in square brackets separated by either spaces or commas. e.g

1	>> row_ve	ec=[1	234	5]		
2	row_vec =	=				
3	1	2	3	4	5	
4						
5	>> row_ve	ec=[1,	2,3,4,	5]		
6	row_vec=					
7	1	2	3	4	5	

Creating row vectors - colon operator

If the values of the vectors are regularly spaced, the colon operator can be used to iterate through these values.

(first:last) produces a vector with all integer entries from first to last e.g.

1										
2	>> rov	vec = 2	1:5							
3	row_ve	row_vec =								
4	1	2	3	4	5					

Creating row vectors - colon operator

A **step value** can also be specified with another colon in the form (first:step:last)

1		
2	>>odd_vec = 1:2:9	
3	odd_vec =	
4	1 3 5 7 9	
(

Exercise

1

In using (first:step:last), what happens if adding the step value would go beyond the range specified by last? e.g:

>>v = 1:2:6

Use (first:step:last) to generate the vector v1 = [9 7 5 3 1]?

Creating row vectors - linspace function

linspace (Linearly spaced vector)

>>linspace(x,y,n)

linspace creates a row vector with n values in the inclusive range from x to y.

Example

1

1	>>v2 =		space(3	,15,5)			
2	V2 =							
3		3	6	9	12	15		

Vector concatenation

• We can use existing vectors to create new ones

1	>> v1= 9:-2:1
2	v1 =
3	9 7 5 3 1
4	>> v2 = linspace(3,15,5)
5	v2 =
6	3 6 9 12 15
7	>> new_vec = [v1 v2]
8	new_vec =
9	9 7 5 3 1 3 6 9 12 15

8

Accessing elements of a vector

new_vec

1	new_vec	=										
2		9	7	5	3	1	3	6	9	12	15	

• 5^{th} element

1	>> new_vec(5)	
2	ans =	
3	1	

• Elements 4 through 6

1	>> new_vec(4:6)	
2	ans =	
3	3 1 3	

Accessing elements of a vector

new_vec

1	new_vec	=										
2		9	7	5	3	1	3	6	9	12	15	

• Elements 2, 3, 7

1	>>new_	vec([23	7])		1
2	ans =					1
3		7	5	6		

• To set the first entry to 10

1	>>	new_v	vec (2	1)=10)					
2	new	_vec	=							
3	10	7	5	3	1	3	6	9	12	5

Exercise

- Use the help function to look up how the zeros function works.
- Use the zeros function to create a row vector of 10 zeros, name it zero_vec
- Set entries 2 through 4 of zero_vec to 1
- Set entries 7 though 10 of zero_vec to values 7 through 10.

What about column vectors?

Explicitly

1	>> col_vec = [2;4;6;8]
2	col_vec =
3	2
4	4
5	6
6	8

• No direct way using colon operator or linspace function...BUT we can fix this!

What about column vectors?

• Simply take the transpose of your row vector!

1	>> row_vec =2:2:8
2	row_vec =
3	2 4 6 8
4	>> col_vec = row_vec'
5	col_vec =
6	2
7	4
8	6
9	8

Matrix variables

• We generalize the creation of row and column vectors, e.g.

1	\gg mat1 = [3 4 5; 2 5 6]
2	mat1 =
3	3 4 5
4	2 5 6

• Or use the colon operator within rows

1	>> mat2=[1:3; 4:6]
2	mat2 =
3	1 2 3
4	4 5 6
1	

Caution

- NOTE: There must always be the same number of values in each row
- If you attempt to create a matrix with different number of values in the rows MATLAB will complain:

>> mat=[1 2 4; 3 4]
Error using vertcat
Dimensions of matrices being concatenated

Matrices of random numbers

- rand(n) returns an $n \times n$ matrix of random values on (0, 1).
- rand(m,n) returns an $m \times n$ matrix.
- A 3×3 matrix of random entries on (0, 1).

1	>> rand(3)			
2	ans =			
3	0.9649	0.9572	0.1419	
4	0.1576	0.4854	0.4218	
5	0.9706	0.8003	0.9157	

• A (2×3) matrix of random entries on (0, 1).

1	>> rand(2,3)			
2	ans =			
3	0.7922	0.6557	0.8491	
4	0.9595	0.0357	0.9340	

Referring to and modifying matrix elements

• Given the following 3×4 matrix

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	>> mat=	=[1:4;5:	8;9:12]
4 5 6 7 8	2	mat =			
	3	1	2	3	4
5 9 10 11 12	4	5	6	7	8
	5	9	10	11	12

• We can extract element *mat*_{2,3} as follows:

1	>> mat(2,3)
2	ans =
3	7

• The submatrix consisting of rows 1,2 and columns 2,3 :

1	>> mat(1:2,2:3)	
2	ans =	
3	2 3	
4	6 7	

Introduction to MATLAB®

Referring to and modifying matrix elements

• Given

1	>> mat=[1:4;5:	8;9:12]
2	mat =			
3	1	2	3	4
4	5	6	7	8
5	9	10	11	12

• Extract the first row of mat

1	>> ma	t(1 ,:)			
2	ans =				
3	1	2	3	4	

• Extract the first column of mat

	1	>> mat(:,1)		
	2	ans =		
	3	1		
	4	5		
	5	9		
4		Introduction to MATLAB [®]	Lecture 2: Vectors and Matrices	19/25

Referring to and modifying matrix elements

Given

1	>> mat=[1:4;5:8;9:12]
2	mat =
3	1 2 3 4
4	5 6 7 8
5	9 10 11 12

• Set the first column of mat to [5;6;7]

1	>> mat(:,1) = 5:7
2	mat =
3	5 2 3 4
4	6 6 7 8
5	7 10 11 12

20 / 25

Deleting vector entries

• Given a vector with 8 random integers between 1 and 10

1	>> vec=1	round ((rand(1	.,8))*	10)				
2	vec =								
3	7	2	1	5	10	3	6	2	

• We can delete the 3rd entry using the empty vectors [] as

1	>> vec(3)	= []						
2	vec =							
3	7	2	5	10	3	6	2	

• To delete multiple entries, simply pass in an index array, e.g. to delete all even entries:

• Note: Here, we can also use end as >>vec(2:2:end) = []

Deleting matrix entries

• Given a 5×5 matrix

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4 23 5 7 14 16
5 4 6 13 20 22
6 10 12 19 21 3
7 11 18 25 2 9

• Delete the 3rd column

1	>> M(:,	3)=[]		
2	M =			
3	17	24	8	15
4	23	5	14	16
5	4	6	20	22
6	10	12	21	3
7	11	18	2	9

Vectors and Matrices

Adding entries

• Given a 5×5 matrix

1	>> M=mag	ic(5)			
2	M =				
3	17	24	1	8	15
4	23	5	7	14	16
5	4	6	13	20	22
6	10	12	19	21	3
7	11	18	25	2	9

• Add a 6th column

1	>> [M,[1:5]']							
2	ans =							
3	17	24	1	8	15	1		
4	23	5	7	14	16	2		
5	4	6	13	20	22	3		
6	10	12	19	21	3	4		
7	11	18	25	2	9	5		

Introduction to MATLAB®

- Add a 6th row to the matrix M
- **②** Look up the diag function and extract the diagonal of the matrix M

Some useful array commands

Find out what each command does before starting **Homework 1**.

- length
- ② size
- ③ numel
- 4 max
- 🗿 min
- 6 sort
- ② zeros
- 0 ones
- reshape
- 🛈 eye
- spy