Matrix and Vector Operations

length and size functions

- length returns the number of elements in a vector
- size returns the number of rows and columns in a vector or matrix.

1	>> vec = -2:2
2	vec =
3	-2 -1 0 1 2
4	>> length(vec)
5	ans =
6	5
7	>> size(vec)
8	ans =
9	1 5

length and size functions - Matrix case

1	>> M = [1:4;5:8]'
2	<u>M</u> =
3	1 5
4	2 6
5	3 7
6	4 8
7	>> [r,c]=size(M)
8	r =
9	4
10	с =
11	2
12	>> length(M)
13	ans =
14	4

- size returns the number of rows and columns
- length returns the number of rows or columns (whichever is the largest one).

Matrix and Array Operations

- Matrix operations follow the rules of linear algebra
- Array operations execute element by element operations on elements of vectors, matrices or multi-dimensional arrays.
- The period character (.) distinguishes array operations from matrix operations.

Ор	Purpose	Description
+	Addition	A+B adds A and B
+	Unitary plus	+A returns A
-	Subtraction	A-B subtracts B from A
-	Unitary minus	-A negates A
*	product	A*B is the usual matrix product
.*	Elmt-wise multiplication	A.*B is elmt-by-elmt product of A and B
.^	Elmt-wise multiplication	A. $$ B has elements A(i,j) raised to B(i,j)
./	Right array division	A./B has elements A(i,j)/B(i,j)

Matrix operations

Define >> a=[1 2 3]; b=[3 4 5]; c=[2;4;5]; d= [0,1];

• We can add vectors of the same dimension

1	>> a+b				
2	ans =				
3	4	6	8		

• Generalized vector addition

1	>> a+c		
2	ans =		
3	3	4	5
4	5	6	7
5	6	7	8

• If the dimensions are not the same, we get dimension errors

	Matrix and Vector Operations	5
3	Matrix dimensions must agree.	
2	Error using +	
1	>> a+d	

Matrix operations

Define >> a=[1 2 3]; b=[3 4 5]; c=[2;4;5];

• We can scale vectors

1	>> -2*a
2	ans =
3	-2 -4 -6

• We can multiply vectors of appropriate dimensions

1	>> a*c	
2	ans =	
3	25	

Element-wise / Component-wise operations

Define >> a=[1 2 3]; b=[3 4 5]; c=[2;4;5];

• Component-wise multiplication on vectors of the same dimension

1	>> a.*b	
2	ans =	
3	3 8 15	

• Generalized component-wise multiplication

1	>> a.*c		
2	ans =		
3	2	4	6
4	4	8	12
5	5	10	15

Component-wise operations

Define >> a=[1 2 3]; b=[3 4 5]; c=[2;4;5];

• Square every component of a vector

	1 2 3	>> a.^2 ans = 1 4 9
•	$a(i)^{b(i)}$	
	1	>> a.^b
	2	ans =
	3	1 16 243

• Generalized powers

1	>> a.^c
2	ans =
3	1 4 9
4	1 16 81
5	1 32 243

Matrix square & Component-wise square

Define >> A=[1,2;3,4]; B=[0,1;1,0];

• The square of a matrix i.e A^2 .

1	>> A^2		
2	ans =		
3	7	10	
4	15	22	

• Component-wise square of A i.e $A(i,j)^2$

1	>> A.^2	
2	ans =	
3	1	4
4	9	16

Component-wise operations

Define >> A=[1,2;3,4]; B=[0,1;1,0];
•
$$A(i,j)^{B(i,j)}$$

1	>> A.^B	
2	ans =	
3	1 2	
4	3 1	

Functions acting on matrices or vectors

• All actions are automatically done component-wise, e.g, given a matrix with random entries on [0, 1]

1	>> M=rand(4)				
2	M =				
3	0.8722	0.9585	0.0591	0.4272	
4	0.0522	0.7900	0.7409	0.1687	
5	0.2197	0.4519	0.5068	0.7517	
6	0.4596	0.3334	0.1999	0.3684	

• We can round off each entry to create a random binary matrix:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4 0 1 1 0 5 0 0 1 1
5 0 0 1 1 5 0 0 1 1
6 0 0 0 0

Functions acting on Matrices or vectors

• Define *M* as

1	>> M=rand(4)				
2	M =				
3	0.8722	0.9585	0.0591	0.4272	
4	0.0522	0.7900	0.7409	0.1687	
5	0.2197	0.4519	0.5068	0.7517	
6	0.4596	0.3334	0.1999	0.3684	

• Compute e^M

1	>> exp(M)				
2	ans =				
3	2.3923	2.6079	1.0609	1.5329	
4	1.0536	2.2035	2.0978	1.1838	
5	1.2457	1.5713	1.6600	2.1206	
6	1.5835	1.3957	1.2213	1.4453	

Create a vector of alternating 1s and 0s

Create a vector of random bits

reshape

The MATLAB functions reshape, fliplr, flipud and rot90 can change the dimensions or configuration of matrices.

• e.g define *M* - a matrix of 12 random integers on [0, 100].

1	>> M=randi(100,3,4)					
2	M =					
3	95	63	73	2		
4	2	54	10	30		
5	83	66	88	18		

• Reshape to 2×6 (reshape - iterates through *M* column-wise)

1	>> r	eshape	(M,2,6)			
2	ans	=					
3	95	83	54	73	88	30	
4	2	63	66	10	2	18	

fliplr

• e.g define M - a matrix of 12 random integers on [0, 100].

1	>> M=ran	di(100	,3,4)		
2	M =				
3	95	63	73	2	
4	2	54	10	30	
5	83	66	88	18	

• fliplr - "flips" the matrix from left to right

1	>> flipl	r(M)			
2	ans =				
3	2	73	63	95	
4	30	10	54	2	
5	18	88	66	83	

flipup

• e.g define M - a matrix of 12 random integers on [0, 100].

1	>> M=ran	di(100	,3,4)		
2	M =				
3	95	63	73	2	
4	2	54	10	30	
5	83	66	88	18	

• flipup - "flips" the matrix from up to down

1	>> flipud(M)				
2	ans =				
3	83	66	88	18	
4	2	54	10	30	
5	95	63	73	2	

rot90

• e.g define M - a matrix of 12 random integers on [0, 100].

	>> M=randi(100,3,4)					
2	M =					
3		95	63	73	2	
4		2	54	10	30	
5		83	66	88	18	

• rot90 - counterclockwise rotation of 90 degrees

1	>> rot90	(M)	
2	ans =		
3	2	30	18
4	73	10	88
5	63	54	66
6	95	2	83

repmat

• e.g define M - a matrix of 12 random integers on [0, 100].

1	>> M=ra	ndi(100	,3,4)		
2	M =				
3	95	63	73	2	
4	2	54	10	30	
5	83	66	88	18	

• repmat will duplicate a matrix, e.g.

1	>> repma	t(M,2,	2)						
2	ans =								
3	95	63	73	2	95	63	73	2	
4	2	54	10	30	2	54	10	30	
5	83	66	88	18	83	66	88	18	
6	95	63	73	2	95	63	73	2	
7	2	54	10	30	2	54	10	30	
8	83	66	88	18	83	66	88	18	

Three-dimensional matrices

Think about printing 2D matrices on sheets of paper and stacking them.

• Create M with entries 1-20 as

1	>> M=res	hape (1	:20,4,	5)		
2	M =					
3	1	5	9	13	17	
4	2	6	10	14	18	
5	3	7	11	15	19	
6	4	8	12	16	20	

- Add a second matrix on top on *M* as >> M(:,,:,2) = fliplr(M);
- Check the size of M

1	>> size(M)	
2	ans =	
3	4 5 2	

Three-dimensional matrices

• Check the contents of the matrix *M*:

1	>> M
2	M(:,:,1) =
3	1 5 9 13 17
4	2 6 10 14 18
5	3 7 11 15 19
6	4 8 12 16 20
7	M(:,:,2) =
8	17 13 9 5 1
9	18 14 10 6 2
10	19 15 11 7 3
11	20 16 12 8 4

3D matrices and images - RGB color model

RGB model

- Create an array of colors by combining various ratios of red, green and blue.
- The RGB values are integers in [0, 255].
- We can store the R, B, G values in the form of a 3D matrix where each layer corresponds to a color channel.

Excercise

 Loyola's official green color has RGB values 0, 104, 87. Create the following checkerboard image using 3D matrices

