Lecture5: User defined functions

Introduction

Algorithm

An algorithm is a sequence of steps needed to solve a problem.

- We will use MATLAB to develop algorithms to solve specific problems.
- The basic algorithm consists of 3 basic steps
 - Get input(s)
 - ② Calculate the result(s)
 - Oisplay result(s)

- A script is a sequence of MATLAB instructions that are stored in a M-file and saved.
- Before creating a script, make sure the current folder is set to the folder in which you want so save your files
- To start a new script >>edit script1.m

input function

1

Objective: Take input from the user

• To call the input function - pass the prompt for input: If the expected input is a number

>>radius =input('Enter the radius:');

If the expected input is a character or string of characters

>> letter=input('Enter a char:','s')

Output statements: disp

- Output statements display strings and/ or results of calculations.
- The simplest output function is disp

1	>> disp('Hello World') Hello World	
3	>> disp(4 ²)	
4	16	

- disp will display the result of an expression or a string without assigning any value to ans.
- disp does not allow formatting.

Formatted output: fprintf

• Formatted output can be printed to the screen using fprintf.

```
1 >> fprintf('The answer is %d. n', 42)
2 The answer is 42.
```

• Specify decimal places for real numbers

```
1 >> x=2;
2 >> fprintf('The square root of %d is %.6f.\n',x,sqrt(x))
3 The square root of 2 is 1.414214.
```

• We can also specify field width

```
1 >> fprintf('The square root of %d is ...
%20.6f.\n',x,sqrt(x))
2 The square root of 2 is 1.414214.
```

Formatted output: fprintf

• We can also specify field width

```
1 >> fprintf('The square root of %d is ...
%20.6f.\n',x,sqrt(x))
2 The square root of 2 is 1.414214.
```

• If the field with is negative, the printing is left aligned

```
1 >> fprintf('The square root of %d is ...
%-20.6f.\n',x,sqrt(x))
2 The square root of 2 is 1.414214
```

Formatted output: fprintf

• We can also print vectors or matrices

```
1 >> x = [0, 0.5, 1];
2 >> y = [x; exp(x)];
3 >> fprintf('%6.le %12.4e\n',y);
4 0.0e+00 1.0000e+00
5 5.0e-01 1.6487e+00
6 1.0e+00 2.7183e+00
```

And strings

1 >> fprintf('My string is %s! \n','Hello World')
2 My string is Hello World!

Formatted output: fprintf

- We pass to fprintf text to be printed and *conversion specifications* and expressions to be printed.
- Each conversion specification is introduced by a % character and ended by a letter

	The argument	
d	is converted into decimal notation	
с	is taken to be a single character	
s	is a string	
е	is converted into decimal notation of the form	
	m.nnnnnExx where the length of n's is specified	
f	is converted into decimal notation of the form	
	mmm.nnnnn where the length of n's is specified	

Special formats

Special character	Format specifier
Backspace	\b
New line	\n
Horizontal tab	\t

Additional options can be found •here

Functions

User defined functions

Scripts vs Functions

- All variables and parameters of a script are accessible in the workspace, i.e. externally accessible.
- This makes scripts good for testing and experimenting.
- In general, create a function to solve a given problem for arbitrary parameters.
- Use a script to run functions for specific parameters required.

Anatomy of MATLAB functions

A function returning a single result consists of the following:

- Function header (the first line), comprised of function outputargument = functionname(input arguments)
- Comments that describe what the function does (these comments will be printed when help is called)
- The body of the function that should manipulate the inputvariable and assign a value to the outputvariable
- end at the end of the function

Anatomy of MATLAB functions

1 function outputargument = functionname(input arguments)
2 %Comments that describe what this function does
3
4 Statements and computations
5 end % end of function

Programming Style Guidelines

- Make sure your comments describing functions or scripts contain useful information (e.g. how the function is called, expected output)
- Put a newline character at the end of every string printed by fprintf
- Suppress the output from all assignment statements in a function
- Functions that return a value do not normally print the value

Single input and output

Write a function to

• Compute the area of a circle of radius r.

Single input and multiple outputs

Write a function stat to

• Compute the average
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and standard deviation $\sqrt{\frac{\sum_{i=1}^{n} (x - \overline{x})^2}{n}}$.

WARNING - the functions mean and std already exist so do not use these as variable names otherwise MATLAB will not perform these functions.

Multiple inputs

Write a function that takes as input matrices x and y from meshgrid and a constant c and evaluates

$$f(x,y) = c \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$$