Linear Transformations

A function T from $\mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* if there exists an $m \times n$ matrix A such that

$$T(\vec{x}) = A\vec{x}$$

for all $\vec{x} \in \mathbb{R}^n$ satisfying the following:

A function T from $\mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* if there exists an $m \times n$ matrix A such that

$$T(\vec{x}) = A\vec{x}$$

for all $\vec{x} \in \mathbb{R}^n$ satisfying the following:

- $T(\vec{v}+\vec{w}) = T(\vec{v}) + T(\vec{w}), \quad \forall \vec{v}, \vec{w} \in \mathbb{R}^n$
- $T(c\vec{v}) = cT(\vec{v}), \quad \forall \vec{v} \in \mathbb{R}^n, c \in \mathbb{R}$

A function T from $\mathbb{R}^n \to \mathbb{R}^m$ is called a *linear transformation* if there exists an $m \times n$ matrix A such that

$$T(\vec{x}) = A\vec{x}$$

for all $\vec{x} \in \mathbb{R}^n$ satisfying the following:

•
$$T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w}), \quad \forall \vec{v}, \vec{w} \in \mathbb{R}^n$$

• $T(c\vec{v}) = cT(\vec{v}), \quad \forall \vec{v} \in \mathbb{R}^n, c \in \mathbb{R}$

Linear transformations preserve lines, unlike nonlinear transformations that may transform a line segment into a parabolic curve, or ellipse

Linear Transformations in 2D

• We focus on $\ {m T}$ from ${\mathbb R}^2 o {\mathbb R}^2$

Linear Transformations in 2D

- We focus on $\ {\boldsymbol{\mathcal{T}}}\ from \ \mathbb{R}^2 \to \mathbb{R}^2$
- **A** is a 2 \times 2 matrix and \vec{v} is a 2 \times 1 column vector.

Linear Transformations in 2D

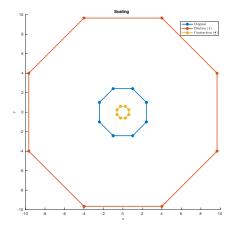
- We focus on $\ {m T}$ from ${\mathbb R}^2 o {\mathbb R}^2$
- **A** is a 2 × 2 matrix and \vec{v} is a 2 × 1 column vector.
- Special examples of linear transformations include:
 - scaling transformations
 - 2 rotations
 - Itranslations

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\vec{v}) = c\vec{v}$ for $c \in (0,\infty)$

- c > 1 dilation by a factor of c
- c < 1 contraction by a factor of c
- In matrix form

$$\boldsymbol{\mathcal{T}}\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}c & 0\\0 & c\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}cx\\cy\end{bmatrix}$$

Scaling Transformations



Rotations by an angle θ about the origin where the rotation is measured from the positive x-axis in an anticlockwise direction

• In matrix form, the linear transformation can be represented as:

$$\boldsymbol{\mathcal{T}}\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Reflections

Reflections about a line *L* through the origin, e.g.

• Reflecting a point in \mathbb{R}^2 about the *y*-axis:

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} -x \\ y \end{bmatrix}$$

in matrix form

Reflections

Reflections about a line *L* through the origin, e.g.

• Reflecting a point in \mathbb{R}^2 about the *y*-axis:

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}-x\\y\end{bmatrix}$$

in matrix form

$$\boldsymbol{\mathcal{T}}\left(egin{bmatrix} x \\ y \end{bmatrix}
ight) = egin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} egin{bmatrix} x \\ y \end{bmatrix}$$

Reflections

Reflections about a line *L* through the origin, e.g.

• Reflecting a point in \mathbb{R}^2 about the *y*-axis:

$$\mathbf{T}\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}-x\\y\end{bmatrix}$$

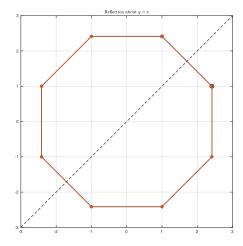
in matrix form

$$\boldsymbol{T}\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}-1 & 0\\0 & 1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$$

• In general, the transformation corresponding to a reflection about the line L making an angle θ with the positive x - axis is given by

$$\boldsymbol{A} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}, \quad a^2 + b^2 = 1$$

Reflection



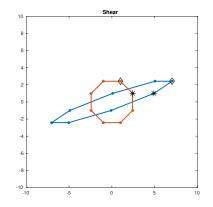
Shear

• y-shear

• x-shear

 $oldsymbol{ au} = egin{bmatrix} 1 & 0 \ a & 1 \end{bmatrix}$ $oldsymbol{ au} = egin{bmatrix} 1 & b \ 0 & 1 \end{bmatrix}$

x-shear



Compositions of transformations

Given two linear transformations $\textbf{\textit{T}}$ and $\textbf{\textit{S}}$ both $\mathbb{R}^2 \to \mathbb{R}^2$ with

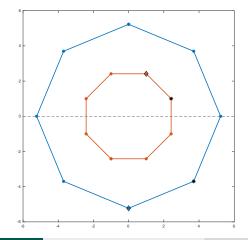
$$\boldsymbol{T}(\vec{v}) = \boldsymbol{A}\vec{v} \text{ and } \boldsymbol{S}(\vec{v}) = \boldsymbol{B}\vec{v} \quad \forall \vec{v} \in \mathbb{R}^2$$

then the composition of the transformation \boldsymbol{T} and \boldsymbol{S} , $\boldsymbol{T} \circ \boldsymbol{S} \boldsymbol{A} \boldsymbol{B}$

$$(\boldsymbol{T} \circ \boldsymbol{S})(\vec{v}) = \boldsymbol{T}(\boldsymbol{S}(\vec{v})) = \boldsymbol{T}(\boldsymbol{B}\vec{v}) = \boldsymbol{A}\boldsymbol{B}\vec{v}$$

Compositions of transformations

Rotation $\theta = \frac{\pi}{8}$ then reflection about y = 0, then dilation by a factor of 2.



Orthogonal transformations

A linear transformation *T* : ℝⁿ → ℝⁿ is called orthogonal if it preserves the length of vectors:

$$||\boldsymbol{T}(\vec{v})|| = ||\vec{v}||, \quad \forall \vec{v} \in \mathbb{R}^n$$

• If $T(\vec{v}) = A\vec{v}$ is an orthogonal transformation, A is an orthogonal matrix

Orthogonal transformations

A linear transformation *T* : ℝⁿ → ℝⁿ is called orthogonal if it preserves the length of vectors:

$$||\boldsymbol{T}(\vec{v})|| = ||\vec{v}||, \quad \forall \vec{v} \in \mathbb{R}^n$$

- If $T(\vec{v}) = A\vec{v}$ is an orthogonal transformation, A is an orthogonal matrix
 - ||Av|| = ||v||, ∀v ∈ ℝⁿ
 The columns of A form an orthonormal basis of ℝⁿ
 A^TA = I_n

$$A^{-1} = A^T$$

Orthogonal transformations

A linear transformation *T* : ℝⁿ → ℝⁿ is called orthogonal if it preserves the length of vectors:

$$||\boldsymbol{T}(\vec{v})|| = ||\vec{v}||, \quad \forall \vec{v} \in \mathbb{R}^n$$

• If $T(\vec{v}) = A\vec{v}$ is an orthogonal transformation, A is an orthogonal matrix

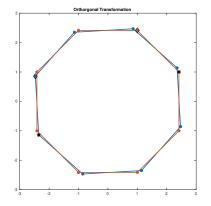
1
$$||\mathbf{A}\vec{v}|| = ||\vec{v}||, \quad \forall \vec{v} \in \mathbb{R}^n$$

2 The columns of \mathbf{A} form an orthonormal basis of \mathbb{R}^n
3 $\mathbf{A}^T A = \mathbf{I}_n$
4 $A^{-1} = A^T$

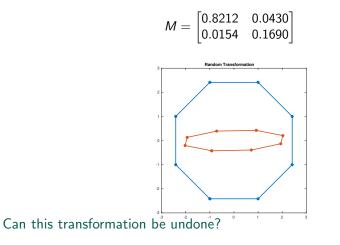
• Orthogonal transformations also preserve dot products of vectors and thus angles are preserved

Random Orthogonal transformations

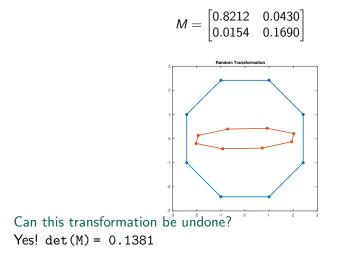
T= orth(rand(2,2))



Random Transformation

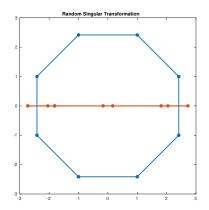


Random Transformation



Random non-invertible Transformation

$$M = \begin{bmatrix} 0.9884 & 0.3409 \\ 0.0000 & 0.0000 \end{bmatrix}$$



These are mappings of the form

$$m{T}(ec{v})=m{A}ec{v}+ec{b}$$

i.e. affine transformations are composed of a linear transformation $(\mathbf{A}\vec{v})$ then shifted in the direction \vec{b}

These are mappings of the form

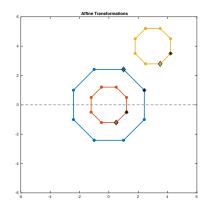
$$m{T}(ec{v})=m{A}ec{v}+ec{b}$$

i.e. affine transformations are composed of a linear transformation $(\mathbf{A}\vec{v})$ then shifted in the direction \vec{b}

- Affine transformations preserve collinearity and ratios of distances.
- Translations, dilations, contractions, reflections and rotations are all examples of affine transformations.

Affine transformations

$$\boldsymbol{\mathcal{T}} = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{bmatrix} + \begin{bmatrix} 3\\ 4 \end{bmatrix}$$



Affine transformations and fractals

Consider **four** different linear transformations on points $\vec{v} = (x, y)$ starting at (0, 0) and **one** linear transformation performed randomly with different probabilities

• 85% of the time:

$${m T}_1 = {m A}_1 ec v + ec b_1 = egin{bmatrix} 0.85 & 0.04 \ -0.04 & 0.85 \end{bmatrix} ec v + egin{bmatrix} 0 \ 1.6 \end{bmatrix}$$

• 7% of the time:

$${m T}_2 = {m A}_2 ec{v} + ec{b}_2 = egin{bmatrix} 0.20 & -0.26 \ 0.23 & 0.22 \end{bmatrix} ec{v} + egin{bmatrix} 0 \ 1.6 \end{bmatrix}$$

• 7% of the time:

$$\boldsymbol{T}_3 = \boldsymbol{A}_3 \vec{v} + \vec{b}_3 = \begin{bmatrix} -0.15 & 0.28\\ 0.26 & 0.24 \end{bmatrix} \vec{v} + \begin{bmatrix} 0\\ 0.44 \end{bmatrix}$$

1% of the time:

$${m T}_4 = {m A}_4 ec v = egin{bmatrix} 0 & 0 \ 0 & 0.16 \end{bmatrix} ec v$$

Exercise: Affine transformations and fractals - Implementation notes

- Use randsample(4,1,true,[0.85 0.07 0.07 0.01]) to generate random integers with weights
- Starting with the origin apply a transformation based on the outcome from randsample, (a switch statement may be useful here).
- plot each point after applying the transformation use drawnow to visualize the points as they are computed.

Affine transformations and fractals

