Linear Transformations

Linear Transformations

A function \boldsymbol{T} from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if there exists an $m \times n$ matrix \boldsymbol{A} such that

$$
\boldsymbol{T}(\vec{x})=\boldsymbol{A} \vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$ satisfying the following:

Linear Transformations

A function \boldsymbol{T} from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if there exists an $m \times n$ matrix \boldsymbol{A} such that

$$
\boldsymbol{T}(\vec{x})=\boldsymbol{A} \vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$ satisfying the following:

- $\boldsymbol{T}(\vec{v}+\vec{w})=\boldsymbol{T}(\vec{v})+\boldsymbol{T}(\vec{w}), \quad \forall \vec{v}, \vec{w} \in \mathbb{R}^{n}$
- $\boldsymbol{T}(c \vec{v})=c \boldsymbol{T}(\vec{v}), \quad \forall \vec{v} \in \mathbb{R}^{n}, c \in \mathbb{R}$

Linear Transformations

A function \boldsymbol{T} from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if there exists an $m \times n$ matrix \boldsymbol{A} such that

$$
\boldsymbol{T}(\vec{x})=\boldsymbol{A} \vec{x}
$$

for all $\vec{x} \in \mathbb{R}^{n}$ satisfying the following:

- $\boldsymbol{T}(\vec{v}+\vec{w})=\boldsymbol{T}(\vec{v})+\boldsymbol{T}(\vec{w}), \quad \forall \vec{v}, \vec{w} \in \mathbb{R}^{n}$
- $\boldsymbol{T}(c \vec{v})=c \boldsymbol{T}(\vec{v}), \quad \forall \vec{v} \in \mathbb{R}^{n}, c \in \mathbb{R}$

Linear transformations preserve lines, unlike nonlinear transformations that may transform a line segment into a parabolic curve, or ellipse

Linear Transformations in 2D

- We focus on \boldsymbol{T} from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Linear Transformations in 2D

- We focus on \boldsymbol{T} from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
- \boldsymbol{A} is a 2×2 matrix and \vec{v} is a 2×1 column vector.

Linear Transformations in 2D

- We focus on \boldsymbol{T} from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
- \boldsymbol{A} is a 2×2 matrix and \vec{v} is a 2×1 column vector.
- Special examples of linear transformations include:
(1) scaling transformations
(2) rotations
(3) translations

Scaling Transformations

$\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\boldsymbol{T}(\vec{v})=c \vec{v}$ for $c \in(0, \infty)$

- $c>1$ - dilation by a factor of c
- $c<1$ - contraction by a factor of c
- In matrix form

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
c x \\
c y
\end{array}\right]
$$

Scaling Transformations

Rotations

Rotations by an angle θ about the origin where the rotation is measured from the positive x-axis in an anticlockwise direction

- In matrix form, the linear transformation can be represented as:

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Reflections

Reflections about a line L through the origin, e.g.

- Reflecting a point in \mathbb{R}^{2} about the y-axis:

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

in matrix form

Reflections

Reflections about a line L through the origin, e.g.

- Reflecting a point in \mathbb{R}^{2} about the y-axis:

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

in matrix form

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Reflections

Reflections about a line L through the origin, e.g.

- Reflecting a point in \mathbb{R}^{2} about the y-axis:

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

in matrix form

$$
\boldsymbol{T}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- In general, the transformation corresponding to a reflection about the line L making an angle θ with the positive x-axis is given by

$$
\boldsymbol{A}=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right], \quad a^{2}+b^{2}=1
$$

Reflection

Shear

- y-shear

$$
\boldsymbol{T}=\left[\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right]
$$

- x-shear

$$
\boldsymbol{T}=\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

x-shear

$$
\boldsymbol{T}=\left[\begin{array}{cc}
1 & 2.5 \\
0 & 1
\end{array}\right]
$$

Compositions of transformations

Given two linear transformations \boldsymbol{T} and \boldsymbol{S} both $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
\boldsymbol{T}(\vec{v})=\boldsymbol{A} \vec{v} \text { and } \boldsymbol{S}(\vec{v})=\boldsymbol{B} \vec{v} \quad \forall \vec{v} \in \mathbb{R}^{2}
$$

then the composition of the transformation \boldsymbol{T} and $S, T \circ S A B$

$$
(\boldsymbol{T} \circ \boldsymbol{S})(\vec{v})=\boldsymbol{T}(\boldsymbol{S}(\vec{v}))=\boldsymbol{T}(\boldsymbol{B} \vec{v})=\boldsymbol{A} \boldsymbol{B} \vec{v}
$$

Compositions of transformations

Rotation $\theta=\frac{\pi}{8}$ then reflection about $y=0$, then dilation by a factor of 2 .

Orthogonal transformations

- A linear transformation $\boldsymbol{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called orthogonal if it preserves the length of vectors:

$$
\|\boldsymbol{T}(\vec{v})\|=\|\vec{v}\|, \quad \forall \vec{v} \in \mathbb{R}^{n}
$$

- If $\boldsymbol{T}(\vec{v})=\boldsymbol{A} \vec{v}$ is an orthogonal transformation, \boldsymbol{A} is an orthogonal matrix

Orthogonal transformations

- A linear transformation $\boldsymbol{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called orthogonal if it preserves the length of vectors:

$$
\|\boldsymbol{T}(\vec{v})\|=\|\vec{v}\|, \quad \forall \vec{v} \in \mathbb{R}^{n}
$$

- If $\boldsymbol{T}(\vec{v})=\boldsymbol{A} \vec{v}$ is an orthogonal transformation, \boldsymbol{A} is an orthogonal matrix
(1) $\|\boldsymbol{A} \vec{v}\|=\|\vec{v}\|, \quad \forall \vec{v} \in \mathbb{R}^{n}$
(2) The columns of \boldsymbol{A} form an orthonormal basis of \mathbb{R}^{n}
(3) $\boldsymbol{A}^{T} A=\boldsymbol{I}_{n}$
(9) $A^{-1}=A^{T}$

Orthogonal transformations

- A linear transformation $\boldsymbol{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called orthogonal if it preserves the length of vectors:

$$
\|\boldsymbol{T}(\vec{v})\|=\|\vec{v}\|, \quad \forall \vec{v} \in \mathbb{R}^{n}
$$

- If $\boldsymbol{T}(\vec{v})=\boldsymbol{A} \vec{v}$ is an orthogonal transformation, \boldsymbol{A} is an orthogonal matrix
(1) $\|\boldsymbol{A} \vec{v}\|=\|\vec{v}\|, \quad \forall \vec{v} \in \mathbb{R}^{n}$
(2) The columns of \boldsymbol{A} form an orthonormal basis of \mathbb{R}^{n}
(3) $\boldsymbol{A}^{T} A=I_{n}$
(9) $A^{-1}=A^{T}$
- Orthogonal transformations also preserve dot products of vectors and thus angles are preserved

Random Orthogonal transformations

$$
\mathrm{T}=\operatorname{orth}(\operatorname{rand}(2,2))
$$

Random Transformation

$$
M=\left[\begin{array}{ll}
0.8212 & 0.0430 \\
0.0154 & 0.1690
\end{array}\right]
$$

Can this transformation be undone?

Random Transformation

$$
M=\left[\begin{array}{ll}
0.8212 & 0.0430 \\
0.0154 & 0.1690
\end{array}\right]
$$

Can this transformation be undone?
Yes! $\operatorname{det}(M)=0.1381$

Random non-invertible Transformation

$$
M=\left[\begin{array}{ll}
0.9884 & 0.3409 \\
0.0000 & 0.0000
\end{array}\right]
$$

Affine transformations

These are mappings of the form

$$
\boldsymbol{T}(\vec{v})=\boldsymbol{A} \vec{v}+\vec{b}
$$

i.e. affine transformations are composed of a linear transformation ($\boldsymbol{A} \vec{v}$) then shifted in the direction \vec{b}

Affine transformations

These are mappings of the form

$$
\boldsymbol{T}(\vec{v})=\boldsymbol{A} \vec{v}+\vec{b}
$$

i.e. affine transformations are composed of a linear transformation ($\boldsymbol{A} \vec{v}$) then shifted in the direction \vec{b}

- Affine transformations preserve collinearity and ratios of distances.
- Translations, dilations, contractions, reflections and rotations are all examples of affine transformations.

Affine transformations

$$
\boldsymbol{T}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Affine transformations and fractals

Consider four different linear transformations on points $\vec{v}=(x, y)$ starting at $(0,0)$ and one linear transformation performed randomly with different probabilities

- 85% of the time:

$$
\boldsymbol{T}_{1}=\boldsymbol{A}_{1} \vec{v}+\vec{b}_{1}=\left[\begin{array}{cc}
0.85 & 0.04 \\
-0.04 & 0.85
\end{array}\right] \vec{v}+\left[\begin{array}{c}
0 \\
1.6
\end{array}\right]
$$

- 7% of the time:

$$
\boldsymbol{T}_{2}=\boldsymbol{A}_{2} \vec{v}+\vec{b}_{2}=\left[\begin{array}{cc}
0.20 & -0.26 \\
0.23 & 0.22
\end{array}\right] \vec{v}+\left[\begin{array}{c}
0 \\
1.6
\end{array}\right]
$$

- 7% of the time:

$$
\boldsymbol{T}_{3}=\boldsymbol{A}_{3} \vec{v}+\vec{b}_{3}=\left[\begin{array}{cc}
-0.15 & 0.28 \\
0.26 & 0.24
\end{array}\right] \vec{v}+\left[\begin{array}{c}
0 \\
0.44
\end{array}\right]
$$

- 1% of the time:

$$
\boldsymbol{T}_{4}=\boldsymbol{A}_{4} \vec{v}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0.16
\end{array}\right] \vec{v}
$$

Exercise: Affine transformations and fractals Implementation notes

- Use randsample (4,1,true, [0.85 0.07 0.07 0.01]) to generate random integers with weights
- Starting with the origin apply a transformation based on the outcome from randsample, (a switch statement may be useful here).
- plot each point after applying the transformation - use drawnow to visualize the points as they are computed.

Affine transformations and fractals

