Newton's method

Newton's method

Objective: solving a non-linear problem f(x) = 0

Objective: solving a non-linear problem f(x) = 0

• Starting with an initial guess x₁, approximate f(x) by the tangent line, L and use that to obtain a new approximate, x₂,

The slope of the line L is $f'(x_1)$, so the point slope formula is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

The slope of the line L is $f'(x_1)$, so the point slope formula is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

 x_2 is the x-intercept of L so $(x_2, 0)$ is on L, therefore

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

The slope of the line L is $f'(x_1)$, so the point slope formula is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

 x_2 is the x-intercept of L so $(x_2, 0)$ is on L, therefore

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

Then assuming that $f'(x_1) \neq 0$, we can solve for x_2 ,

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

The slope of the line L is $f'(x_1)$, so the point slope formula is

$$y - f(x_1) = f'(x_1)(x - x_1)$$

 x_2 is the x-intercept of L so $(x_2, 0)$ is on L, therefore

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

Then assuming that $f'(x_1) \neq 0$, we can solve for x_2 ,

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

 x_2 is our second approximation and is closer to the root, r.

Repeat!

Repeat!

Convergence

• We obtain a sequence of approximations x_1, x_2, x_3, \ldots , where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

provided $f'(x_n) \neq 0$

Convergence

• We obtain a sequence of approximations x_1, x_2, x_3, \ldots , where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

provided $f'(x_n) \neq 0$

If the f ∈ C²(i.e has continuous f' and f") and if x₁ is chosen sufficiently close to r then

$$\lim_{n\to\infty}x_n=r$$

Convergence

• We obtain a sequence of approximations x_1, x_2, x_3, \ldots , where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

provided $f'(x_n) \neq 0$

If the f ∈ C²(i.e has continuous f' and f") and if x₁ is chosen sufficiently close to r then

$$\lim_{n\to\infty}x_n=r$$

• We can quantify how fast the convergence occurs (see MA 427).

Newton's method may fail

The initial guess needs to be sufficiently close to r

Implementing Newton's method: Stopping criterion

We Loop until we are satisfied by the approximation x_{n+1} to r. In most practical cases the true solution is not known so $|x_{n+1} - r|$ cannot be computed, so we approximate the error:

$$|x_{n+1}-x_n|\approx |x_{n+1}-r|$$

Given an error tolerance, ϵ , stop the loop when

$$|x_{n+1}-x_n|\leq \epsilon$$

Implementing Newton's method: Stopping criterion

We Loop until we are satisfied by the approximation x_{n+1} to r. In most practical cases the true solution is not known so $|x_{n+1} - r|$ cannot be computed, so we approximate the error:

$$|x_{n+1}-x_n|\approx |x_{n+1}-r|$$

Given an error tolerance, ϵ , stop the loop when

$$|x_{n+1}-x_n|\leq \epsilon$$

Other stopping criteria:

•
$$|f(x_{n+1})| \le \epsilon$$
 or
• $\left|\frac{x_{n+1} - x_n}{x_n}\right| \le \epsilon$

Implementing Newton's method

>>[r, its] = newton_solver(f,x1,espilon)

Input: initial guess and f **Output:** root r and number of iterations, its while $((|x_{n+1} - x_n| > \epsilon) \text{ and } (its < MAX_ITS))$ do $\begin{vmatrix} x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \\ its = its + 1 \end{vmatrix}$ end

Algorithm 1: Newton's method

Use the MATLAB Symbolic Package to find and evaluate the derivative of f.