Newton's method

Newton's method

Objective: solving a non-linear problem $f(x)=0$

Newton's method

Objective: solving a non-linear problem $f(x)=0$

- Starting with an initial guess x_{1}, approximate $f(x)$ by the tangent line, L and use that to obtain a new approximate, x_{2},

A formula for the approximations

The slope of the line L is $f^{\prime}\left(x_{1}\right)$, so the point slope formula is

$$
y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

A formula for the approximations

The slope of the line L is $f^{\prime}\left(x_{1}\right)$, so the point slope formula is

$$
y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

x_{2} is the x-intercept of L so $\left(x_{2}, 0\right)$ is on L, therefore

$$
0-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)
$$

A formula for the approximations

The slope of the line L is $f^{\prime}\left(x_{1}\right)$, so the point slope formula is

$$
y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

x_{2} is the x-intercept of L so $\left(x_{2}, 0\right)$ is on L, therefore

$$
0-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)
$$

Then assuming that $f^{\prime}\left(x_{1}\right) \neq 0$, we can solve for x_{2},

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

A formula for the approximations

The slope of the line L is $f^{\prime}\left(x_{1}\right)$, so the point slope formula is

$$
y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

x_{2} is the x-intercept of L so $\left(x_{2}, 0\right)$ is on L, therefore

$$
0-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)
$$

Then assuming that $f^{\prime}\left(x_{1}\right) \neq 0$, we can solve for x_{2},

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

x_{2} is our second approximation and is closer to the root, r.

Repeat!

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

Repeat!

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}
$$

$$
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}
$$

Convergence

- We obtain a sequence of approximations $x_{1}, x_{2}, x_{3}, \ldots$, where

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

provided $f^{\prime}\left(x_{n}\right) \neq 0$

Convergence

- We obtain a sequence of approximations $x_{1}, x_{2}, x_{3}, \ldots$, where

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

provided $f^{\prime}\left(x_{n}\right) \neq 0$

- If the $f \in C^{2}$ (i.e has continuous f^{\prime} and $\left.f^{\prime \prime}\right)$ and if x_{1} is chosen sufficiently close to r then

$$
\lim _{n \rightarrow \infty} x_{n}=r
$$

Convergence

- We obtain a sequence of approximations $x_{1}, x_{2}, x_{3}, \ldots$, where

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

provided $f^{\prime}\left(x_{n}\right) \neq 0$

- If the $f \in C^{2}$ (i.e has continuous f^{\prime} and $f^{\prime \prime}$) and if x_{1} is chosen sufficiently close to r then

$$
\lim _{n \rightarrow \infty} x_{n}=r
$$

- We can quantify how fast the convergence occurs (see MA 427).

Newton's method may fail

The initial guess needs to be sufficiently close to r

Implementing Newton's method: Stopping criterion

We Loop until we are satisfied by the approximation x_{n+1} to r. In most practical cases the true solution is not known so $\left|x_{n+1}-r\right|$ cannot be computed, so we approximate the error:

$$
\left|x_{n+1}-x_{n}\right| \approx\left|x_{n+1}-r\right|
$$

Given an error tolerance, ϵ, stop the loop when

$$
\left|x_{n+1}-x_{n}\right| \leq \epsilon
$$

Implementing Newton's method: Stopping criterion

We Loop until we are satisfied by the approximation x_{n+1} to r. In most practical cases the true solution is not known so $\left|x_{n+1}-r\right|$ cannot be computed, so we approximate the error:

$$
\left|x_{n+1}-x_{n}\right| \approx\left|x_{n+1}-r\right|
$$

Given an error tolerance, ϵ, stop the loop when

$$
\left|x_{n+1}-x_{n}\right| \leq \epsilon
$$

Other stopping criteria:

- $\left|f\left(x_{n+1}\right)\right| \leq \epsilon$ or
- $\left|\frac{x_{n+1}-x_{n}}{x_{n}}\right| \leq \epsilon$

Implementing Newton's method

$$
\gg[r, i t s]=\text { newton_solver(f,x1,espilon) }
$$

Input: initial guess and f
Output: root r and number of iterations, its while $\left(\left(\left|x_{n+1}-x_{n}\right|>\epsilon\right)\right.$ and (its $\left.<M A X_{-} I T S\right)$) do

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& \text { its }=i t s+1 \\
& \text { end }
\end{aligned}
$$

Algorithm 1: Newton's method
Use the MATLAB Symbolic Package to find and evaluate the derivative of f.

