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Objective

b
Approximate / f(x) dx

A jog down Calc I/Il lane
@ The integral is the area under the curve, i.e between the curve and
X-axis
@ However, analytical anti-derivatives are not always easy to write
down, making evaluation of some basic definite integrals difficult.

b 2
/eX dx
a

@ In some practical cases, we do not have an analytical representation
of f but we still want to approximate the integral

@ Numerical integration techniques are necessary to approximate the
integral
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Approximating/ f(x) dx (basic idea)

Approximate the “area” under the curve on [a, b] using simple sub-regions
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@ Sub-divide the interval [a, b] into n subintervals of equal width

@ More sophisticated methods use adaptive widths of subinterval
depending on the behavior of the function
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Approximating/ f(x) dx (basic idea)

Approximate the “area” under the curve on [a, b] using simple sub-regions

@ Sub-divide the interval [a, b] into n subintervals of equal width

b—a
n

Ax =

@ More sophisticated methods use adaptive widths of subinterval
depending on the behavior of the function

@ As the number of sub-intervals increases, we obtain a more accurate
approximation of the area under the curve

» Desmos demo

e Numerical Integration il


https://www.desmos.com/calculator/88sbm0rmxd

|
b

Approximating/ f(x) dx (Implementation)
a

Rectangles
@ Divide [a, b] so that

‘a:xl << < Xp<Xpp1=b, k=1,2,....n

with xx = a+ (k — 1)Ax
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a

Rectangles
@ Divide [a, b] so that

‘a:xl <xp < v < Xp < Xpg1 = b, k:1,2,...,n‘

with xx = a+ (k — 1)Ax
@ On each sub-interval [xx, xx 1] select a sample point, x; € [Xi, Xi41]
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Approximating/ f(x) dx (Implementation)
a

Rectangles
@ Divide [a, b] so that

‘a:xl <xp < v < Xp < Xpg1 = b, k:1,2,...,n‘

with xx = a+ (k — 1)Ax
@ On each sub-interval [xx, xx 1] select a sample point, x; € [Xi, Xi41]

© Define the height of each sub-rectangle as f(x;) so that the area of
each sub-rectangle is

f(x*)Ax

@ Summing up for the n sub-intervals

b n
/ f(x)dx ~ Z f(xg)Ax
a k=1
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Approximating/ f(x) dx (Implementation)
a

Trapeziods

© Each trapezoid has a base of [xk, xx+1] with parallel sides of length
f(Xk) and f(Xk—i-l)
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Approximating/ f(x) dx (Implementation)
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Trapeziods

© Each trapezoid has a base of [xk, xx+1] with parallel sides of length
f(Xk) and f(Xk—i-l)
@ The area of the k-th Trapezoid is
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Approximating/ f(x) dx (Implementation)
a

Trapeziods

© Each trapezoid has a base of [xk, xx+1] with parallel sides of length
f(Xk) and f(Xk—i-l)
@ The area of the k-th Trapezoid is

Ax

5 (F(xk) + (1))

© Summing up for the n sub-intervals

b Ax
/a f(x)dx ~ - Z (F (k) + f(xk41))

k=1
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Approximating/ f(x) dx (Implementation)
a

Trapezoids
b Ax <
/a F) e 5537 (Fou) + F k)

k=1

= %([f(h) + )]+ [(FOR) + F(xa) + -+ + [FOm—1) + FOm)] + [ (xn) + F(xnt1)]

- %(f(n) +2f () + -+ +2f(xn) + F(xn41))

/ab f(x)dx = % (f(xl) +2 i f(xk) + f(Xn+1)>

k=2
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Error Analysis (MA 428)

Theorem

Assuming max, |f"(x)] < M. Then the midpoint method has error
a<x<

M(b — a)(Ax)?
24

and the Trapezoidal method has error

M(b — a)(Lx)?
12
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Simpson's Method for approximating / f(x) dx

Approximate the area under the function using second order curves

e Numerical Integration it



-
b
Simpson's Method for approximating / f(x) dx

Approximate the area under the function using second order curves

@ Divide [a, b] into n sub-intervals of width Ax = 222 where n is even.
n

e Numerical Integration it



-
b
Simpson's Method for approximating / f(x) dx

Approximate the area under the function using second order curves

@ Divide [a, b] into n sub-intervals of width Ax = 222 where n is even.
n

@ On each pair of sub-intervals [xx_1, xk] and [xx, xk41] (kK =2,--- ,n)
approximate the area under the curve with a quadratic function passing

through the points:
(xk—1, F(xk—1)), (xk, F(xx)) and (Xis1, F(Xu41))
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Simpson's Method for approximating / f(x) dx

Approximate the area under the function using second order curves

@ Divide [a, b] into n sub-intervals of width Ax = 222 where n is even.
n

@ On each pair of sub-intervals [xx_1, xk] and [xx, xk41] (kK =2,--- ,n)
approximate the area under the curve with a quadratic function passing

through the points:
(xk—1, F(xk—1)), (xk, F(xx)) and (Xis1, F(Xu41))

© The area under each parabola on [xx_1, xx] and [xk, xk+1] is

% (F(xk—1) + 4F (xk) + F(xk11))
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Simpson's Method for approximating / f(x) dx

Approximate the area under the function using second order curves

@ Divide [a, b] into n sub-intervals of width Ax = 222 where n is even.
n

@ On each pair of sub-intervals [xx_1, xk] and [xx, xk41] (kK =2,--- ,n)
approximate the area under the curve with a quadratic function passing

through the points:
(Xk—1, F(xk-1)), (xk, F(x)) and (xip1, F(Xk41))

© The area under each parabola on [xx_1, xx] and [xk, xk+1] is

% (F(xk—1) + 4F (xk) + F(xk11))

© Summing up over all sub-intervals

b
A
/ f(X)dX~7X(f1 A+ 26+ Ayt 260y + A+ frpr)
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Error Analysis (MA 428)

Theorem

Assuming max, |f(4)(x)| < M. Then the Simpson’'s method has error
a<x<

M(b — a)(Ax)*
180

e Composite Simpson's method has a convergence rate of O(Ax)*
compared to Midpoint and Trapezoidal that are O(Ax)?.
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Error comparison

Comparison
T

T
—&— Simpsons
——dhe— Midpoint

Trapeziod | |

logyo(error)

-1 -1.5 -2 -25 -3 -3.5 -4
logio(Ax)

@ Midpoint and Trapezoidal methods are second order in Ax i.e. O((Ax)?)
@ Simpsons method is fourth order in Ax i.e. O((Ax)*)
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Generalized formula

Higher order methods of the form
b N
/ f(x)dx = Zf(x,-)w,-
a i=1

@ These methods can be extended to 2D and 3D integrals (see MA
428).
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