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Objective

Approximate

∫ b

a
f (x) dx

A jog down Calc I/II lane

The integral is the area under the curve, i.e between the curve and
x-axis

However, analytical anti-derivatives are not always easy to write
down, making evaluation of some basic definite integrals difficult.∫ b

a
ex

2
dx

In some practical cases, we do not have an analytical representation
of f but we still want to approximate the integral

Numerical integration techniques are necessary to approximate the
integral
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Approximating

∫ b

a

f (x) dx (basic idea)

Approximate the “area” under the curve on [a, b] using simple sub-regions

Sub-divide the interval [a, b] into n subintervals of equal width

∆x =
b − a

n

More sophisticated methods use adaptive widths of subinterval
depending on the behavior of the function

As the number of sub-intervals increases, we obtain a more accurate
approximation of the area under the curve

Desmos demo
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Approximating

∫ b

a

f (x) dx (Implementation)

Rectangles
1 Divide [a, b] so that

a = x1 < x2 < · · · < xn < xn+1 = b, k = 1, 2, . . . , n

with xk = a + (k − 1)∆x

2 On each sub-interval [xk , xk+1] select a sample point, x∗k ∈ [xk , xk+1]
3 Define the height of each sub-rectangle as f (x∗k ) so that the area of

each sub-rectangle is

f (x∗)∆x

4 Summing up for the n sub-intervals∫ b

a
f (x) dx ≈

n∑
k=1

f (x∗k )∆x
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Approximating

∫ b

a

f (x) dx (Implementation)

Trapeziods

1 Each trapezoid has a base of [xk , xk+1] with parallel sides of length
f (xk) and f (xk+1)

2 The area of the k-th Trapezoid is

∆x

2

(
f (xk) + f (xk+1)

)
3 Summing up for the n sub-intervals

∫ b

a
f (x) dx ≈ ∆x

2

n∑
k=1

(
f (xk) + f (xk+1)

)
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Approximating

∫ b

a

f (x) dx (Implementation)

Trapezoids

∫ b

a
f (x) dx ≈

∆x

2

n∑
k=1

(
f (xk ) + f (xk+1)

)
=

∆x

2

(
[f (x1) + f (x2)] + [(f (x2) + f (x3)] + · · ·+ [f (xn−1) + f (xn)] + [f (xn) + f (xn+1)]

)
=

∆x

2

(
f (x1) + 2f (x2) + · · ·+ 2f (xn) + f (xn+1)

)

∫ b

a
f (x) dx =

∆x

2

(
f (x1) + 2

n∑
k=2

f (xk) + f (xn+1)

)
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Error Analysis (MA 428)

Theorem

Assuming max
a≤x≤b

|f ′′(x)| ≤ M. Then the midpoint method has error

M(b − a)(∆x)2

24

and the Trapezoidal method has error

M(b − a)(∆x)2

12
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Simpson’s Method for approximating

∫ b

a

f (x) dx

Approximate the area under the function using second order curves

1 Divide [a, b] into n sub-intervals of width ∆x = b−a
n , where n is even.

2 On each pair of sub-intervals [xk−1, xk ] and [xk , xk+1] (k = 2, · · · , n)
approximate the area under the curve with a quadratic function passing
through the points:(

xk−1, f (xk−1)
)
,
(
xk , f (xk)

)
and (xk+1, f (xk+1))

3 The area under each parabola on [xk−1, xk ] and [xk , xk+1] is

∆x

3

(
f (xk−1) + 4f (xk) + f (xk+1)

)
4 Summing up over all sub-intervals∫ b

a

f (x) dx ≈ ∆x

3

(
f1 + 4f2 + 2f3 + 4f4 + · · ·+ 2fn−1 + 4fn + fn+1

)
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Error Analysis (MA 428)

Theorem

Assuming max
a≤x≤b

|f (4)(x)| ≤ M. Then the Simpson’s method has error

M(b − a)(∆x)4

180

Composite Simpson’s method has a convergence rate of O(∆x)4

compared to Midpoint and Trapezoidal that are O(∆x)2.
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Error comparison

log10(∆x)
-4-3.5-3-2.5-2-1.5-1

lo
g
1
0
(e
r
r
o
r
)

-16

-14

-12

-10

-8

-6

-4

-2
Comparison

Simpsons

Midpoint

Trapeziod

Midpoint and Trapezoidal methods are second order in ∆x i.e. O((∆x)2)

Simpsons method is fourth order in ∆x i.e. O((∆x)4)
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Generalized formula

Higher order methods of the form∫ b

a
f (x) dx =

N∑
i=1

f (xi )wi

These methods can be extended to 2D and 3D integrals (see MA
428).
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