Numerical Integration

Objective

$$
\text { Approximate } \int_{a}^{b} f(x) d x
$$

Objective

$$
\text { Approximate } \int_{a}^{b} f(x) d x
$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and x-axis

Objective

$$
\text { Approximate } \int_{a}^{b} f(x) d x
$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and x-axis
- However, analytical anti-derivatives are not always easy to write down, making evaluation of some basic definite integrals difficult.

$$
\int_{a}^{b} e^{x^{2}} d x
$$

Objective

$$
\text { Approximate } \int_{a}^{b} f(x) d x
$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and x-axis
- However, analytical anti-derivatives are not always easy to write down, making evaluation of some basic definite integrals difficult.

$$
\int_{a}^{b} e^{x^{2}} d x
$$

- In some practical cases, we do not have an analytical representation of f but we still want to approximate the integral

Objective

$$
\text { Approximate } \int_{a}^{b} f(x) d x
$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and x-axis
- However, analytical anti-derivatives are not always easy to write down, making evaluation of some basic definite integrals difficult.

$$
\int_{a}^{b} e^{x^{2}} d x
$$

- In some practical cases, we do not have an analytical representation of f but we still want to approximate the integral
- Numerical integration techniques are necessary to approximate the integral

Approximating $\int_{a}^{b} f(x) d x$ (basic idea)

Approximate the "area" under the curve on $[a, b]$ using simple sub-regions

Approximating $\int_{a}^{b} f(x) d x$ (basic idea)

Approximate the "area" under the curve on $[a, b]$ using simple sub-regions

- Sub-divide the interval $[a, b]$ into n subintervals of equal width

$$
\Delta x=\frac{b-a}{n}
$$

Approximating $\int_{a}^{b} f(x) d x$ (basic idea)

Approximate the "area" under the curve on $[a, b]$ using simple sub-regions

- Sub-divide the interval $[a, b]$ into n subintervals of equal width

$$
\Delta x=\frac{b-a}{n}
$$

- More sophisticated methods use adaptive widths of subinterval depending on the behavior of the function

Approximating $\int_{a}^{b} f(x) d x$ (basic idea)

Approximate the "area" under the curve on $[a, b]$ using simple sub-regions

- Sub-divide the interval $[a, b]$ into n subintervals of equal width

$$
\Delta x=\frac{b-a}{n}
$$

- More sophisticated methods use adaptive widths of subinterval depending on the behavior of the function
- As the number of sub-intervals increases, we obtain a more accurate approximation of the area under the curve

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)

Rectangles

(1) Divide $[a, b]$ so that

$$
a=x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=b, \quad k=1,2, \ldots, n
$$

with $x_{k}=a+(k-1) \Delta x$

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)
Rectangles
(1) Divide $[a, b]$ so that

$$
a=x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=b, \quad k=1,2, \ldots, n
$$

with $x_{k}=a+(k-1) \Delta x$
(2) On each sub-interval $\left[x_{k}, x_{k+1}\right]$ select a sample point, $x_{k}^{*} \in\left[x_{k}, x_{k+1}\right]$

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)
Rectangles
(1) Divide $[a, b]$ so that

$$
a=x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=b, \quad k=1,2, \ldots, n
$$

with $x_{k}=a+(k-1) \Delta x$
(2) On each sub-interval $\left[x_{k}, x_{k+1}\right]$ select a sample point, $x_{k}^{*} \in\left[x_{k}, x_{k+1}\right]$
(3) Define the height of each sub-rectangle as $f\left(x_{k}^{*}\right)$ so that the area of each sub-rectangle is

$$
f\left(x^{*}\right) \Delta x
$$

(9) Summing up for the n sub-intervals

$$
\int_{a}^{b} f(x) d x \approx \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x
$$

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)

Trapeziods

(1) Each trapezoid has a base of $\left[x_{k}, x_{k+1}\right]$ with parallel sides of length $f\left(x_{k}\right)$ and $f\left(x_{k+1}\right)$

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)

Trapeziods

(1) Each trapezoid has a base of $\left[x_{k}, x_{k+1}\right]$ with parallel sides of length $f\left(x_{k}\right)$ and $f\left(x_{k+1}\right)$
(2) The area of the k-th Trapezoid is

$$
\frac{\Delta x}{2}\left(f\left(x_{k}\right)+f\left(x_{k+1}\right)\right)
$$

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)

Trapeziods

(1) Each trapezoid has a base of $\left[x_{k}, x_{k+1}\right]$ with parallel sides of length $f\left(x_{k}\right)$ and $f\left(x_{k+1}\right)$
(2) The area of the k-th Trapezoid is

$$
\frac{\Delta x}{2}\left(f\left(x_{k}\right)+f\left(x_{k+1}\right)\right)
$$

(3) Summing up for the n sub-intervals

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2} \sum_{k=1}^{n}\left(f\left(x_{k}\right)+f\left(x_{k+1}\right)\right)
$$

Approximating $\int_{a}^{b} f(x) d x$ (Implementation)

Trapezoids

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{\Delta x}{2} \sum_{k=1}^{n}\left(f\left(x_{k}\right)+f\left(x_{k+1}\right)\right) \\
& =\frac{\Delta x}{2}\left(\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\left[\left(f\left(x_{2}\right)+f\left(x_{3}\right)\right]+\cdots+\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]+\left[f\left(x_{n}\right)+f\left(x_{n}+1\right)\right]\right.\right. \\
& =\frac{\Delta x}{2}\left(f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x=\frac{\Delta x}{2}\left(f\left(x_{1}\right)+2 \sum_{k=2}^{n} f\left(x_{k}\right)+f\left(x_{n+1}\right)\right)
$$

Error Analysis (MA 428)

Theorem
Assuming $\max _{a \leq x \leq b}\left|f^{\prime \prime}(x)\right| \leq M$. Then the midpoint method has error

$$
\frac{M(b-a)(\Delta x)^{2}}{24}
$$

and the Trapezoidal method has error

$$
\frac{M(b-a)(\Delta x)^{2}}{12}
$$

Simpson's Method for approximating $\int_{a}^{b} f(x) d x$
Approximate the area under the function using second order curves

Simpson's Method for approximating $\int_{a}^{b} f(x) d x$
Approximate the area under the function using second order curves
(1) Divide $[a, b]$ into n sub-intervals of width $\Delta x=\frac{b-a}{n}$, where n is even.

Simpson's Method for approximating $\int_{a}^{b} f(x) d x$

Approximate the area under the function using second order curves
(1) Divide $[a, b]$ into n sub-intervals of width $\Delta x=\frac{b-a}{n}$, where n is even.
(2) On each pair of sub-intervals $\left[x_{k-1}, x_{k}\right]$ and $\left[x_{k}, x_{k+1}\right](k=2, \cdots, n)$ approximate the area under the curve with a quadratic function passing through the points:

$$
\left(x_{k-1}, f\left(x_{k-1}\right)\right),\left(x_{k}, f\left(x_{k}\right)\right) \text { and }\left(x_{k+1}, f\left(x_{k+1}\right)\right)
$$

Simpson's Method for approximating $\int_{a}^{b} f(x) d x$
Approximate the area under the function using second order curves
(1) Divide $[a, b]$ into n sub-intervals of width $\Delta x=\frac{b-a}{n}$, where n is even.
(2) On each pair of sub-intervals $\left[x_{k-1}, x_{k}\right]$ and $\left[x_{k}, x_{k+1}\right](k=2, \cdots, n)$ approximate the area under the curve with a quadratic function passing through the points:

$$
\left(x_{k-1}, f\left(x_{k-1}\right)\right),\left(x_{k}, f\left(x_{k}\right)\right) \text { and }\left(x_{k+1}, f\left(x_{k+1}\right)\right)
$$

(3) The area under each parabola on $\left[x_{k-1}, x_{k}\right]$ and $\left[x_{k}, x_{k+1}\right]$ is

$$
\frac{\Delta x}{3}\left(f\left(x_{k-1}\right)+4 f\left(x_{k}\right)+f\left(x_{k+1}\right)\right)
$$

Simpson's Method for approximating $\int_{a}^{b} f(x) d x$
Approximate the area under the function using second order curves
(1) Divide $[a, b]$ into n sub-intervals of width $\Delta x=\frac{b-a}{n}$, where n is even.
(2) On each pair of sub-intervals $\left[x_{k-1}, x_{k}\right]$ and $\left[x_{k}, x_{k+1}\right](k=2, \cdots, n)$ approximate the area under the curve with a quadratic function passing through the points:

$$
\left(x_{k-1}, f\left(x_{k-1}\right)\right),\left(x_{k}, f\left(x_{k}\right)\right) \text { and }\left(x_{k+1}, f\left(x_{k+1}\right)\right)
$$

(3) The area under each parabola on $\left[x_{k-1}, x_{k}\right]$ and $\left[x_{k}, x_{k+1}\right]$ is

$$
\frac{\Delta x}{3}\left(f\left(x_{k-1}\right)+4 f\left(x_{k}\right)+f\left(x_{k+1}\right)\right)
$$

(9) Summing up over all sub-intervals

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left(f_{1}+4 f_{2}+2 f_{3}+4 f_{4}+\cdots+2 f_{n-1}+4 f_{n}+f_{n+1}\right)
$$

Error Analysis (MA 428)

Theorem
Assuming $\max _{a \leq x \leq b}\left|f^{(4)}(x)\right| \leq M$. Then the Simpson's method has error

$$
\frac{M(b-a)(\Delta x)^{4}}{180}
$$

- Composite Simpson's method has a convergence rate of $\mathcal{O}(\Delta x)^{4}$ compared to Midpoint and Trapezoidal that are $\mathcal{O}(\Delta x)^{2}$.

Error comparison

- Midpoint and Trapezoidal methods are second order in Δx i.e. $\mathcal{O}\left((\Delta x)^{2}\right)$
- Simpsons method is fourth order in Δx i.e. $\mathcal{O}\left((\Delta x)^{4}\right)$

Generalized formula

Higher order methods of the form

$$
\int_{a}^{b} f(x) d x=\sum_{i=1}^{N} f\left(x_{i}\right) w_{i}
$$

- These methods can be extended to $2 D$ and $3 D$ integrals (see MA 428).

