Numerical Integration

Approximate $\int_{a}^{b} f(x) dx$

Approximate
$$\int_{a}^{b} f(x) dx$$

- A jog down Calc I/II lane
 - The integral is the area under the curve, i.e between the curve and *x*-axis

Approximate
$$\int_{a}^{b} f(x) dx$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and *x*-axis
- However, analytical anti-derivatives are not always easy to write down, making evaluation of some basic definite integrals difficult.

$$\int_{a}^{b} e^{x^{2}} dx$$

Approximate
$$\int_{a}^{b} f(x) dx$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and *x*-axis
- However, analytical anti-derivatives are not always easy to write down, making evaluation of some basic definite integrals difficult.

$$\int_{a}^{b} e^{x^{2}} dx$$

• In some practical cases, we do not have an analytical representation of *f* but we still want to approximate the integral

Approximate
$$\int_{a}^{b} f(x) dx$$

A jog down Calc I/II lane

- The integral is the area under the curve, i.e between the curve and *x*-axis
- However, analytical anti-derivatives are not always easy to write down, making evaluation of some basic definite integrals difficult.

$$\int_{a}^{b} e^{x^{2}} dx$$

- In some practical cases, we do not have an analytical representation of *f* but we still want to approximate the integral
- Numerical integration techniques are necessary to approximate the integral

Approximating
$$\int_{a}^{b} f(x) dx$$
 (basic idea)

• Sub-divide the interval [a, b] into n subintervals of equal width

$$\Delta x = \frac{b-a}{n}$$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (basic idea)

• Sub-divide the interval [a, b] into n subintervals of equal width

$$\Delta x = \frac{b-a}{n}$$

• More sophisticated methods use adaptive widths of subinterval depending on the behavior of the function

Approximating
$$\int_{a}^{b} f(x) dx$$
 (basic idea)

• Sub-divide the interval [a, b] into n subintervals of equal width

$$\Delta x = \frac{b-a}{n}$$

- More sophisticated methods use adaptive widths of subinterval depending on the behavior of the function
- As the number of sub-intervals increases, we obtain a more accurate approximation of the area under the curve

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Rectangles

• Divide [a, b] so that

$$a = x_1 < x_2 < \cdots < x_n < x_{n+1} = b, \quad k = 1, 2, \dots, n$$

with $x_k = a + (k-1)\Delta x$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Rectangles

• Divide [a, b] so that

$$a = x_1 < x_2 < \cdots < x_n < x_{n+1} = b, \quad k = 1, 2, \dots, n$$

with
$$x_k = a + (k-1)\Delta x$$

2 On each sub-interval $[x_k, x_{k+1}]$ select a sample point, $x_k^* \in [x_k, x_{k+1}]$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Rectangles

• Divide [a, b] so that

$$a = x_1 < x_2 < \cdots < x_n < x_{n+1} = b, \quad k = 1, 2, \dots, n$$

with
$$x_k = a + (k-1)\Delta x$$

2 On each sub-interval $[x_k, x_{k+1}]$ select a sample point, $x_k^* \in [x_k, x_{k+1}]$

Obefine the height of each sub-rectangle as f(x^{*}_k) so that the area of each sub-rectangle is

$$f(x^*)\Delta x$$

Summing up for the n sub-intervals

$$\int_{a}^{b} f(x) \, dx \approx \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x$$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Trapeziods

• Each trapezoid has a base of $[x_k, x_{k+1}]$ with parallel sides of length $f(x_k)$ and $f(x_{k+1})$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Trapeziods

- Each trapezoid has a base of [x_k, x_{k+1}] with parallel sides of length f(x_k) and f(x_{k+1})
- The area of the k-th Trapezoid is

$$\frac{\Delta x}{2} \big(f(x_k) + f(x_{k+1}) \big)$$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Trapeziods

- Each trapezoid has a base of [x_k, x_{k+1}] with parallel sides of length f(x_k) and f(x_{k+1})
- 2 The area of the k-th Trapezoid is

$$\frac{\Delta x}{2} \big(f(x_k) + f(x_{k+1}) \big)$$

Summing up for the *n* sub-intervals

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} \sum_{k=1}^{n} \left(f(x_k) + f(x_{k+1}) \right)$$

Approximating
$$\int_{a}^{b} f(x) dx$$
 (Implementation)

Trapezoids

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} \sum_{k=1}^{n} \left(f(x_{k}) + f(x_{k+1}) \right)$$

= $\frac{\Delta x}{2} \left([f(x_{1}) + f(x_{2})] + [(f(x_{2}) + f(x_{3})] + \dots + [f(x_{n-1}) + f(x_{n})] + [f(x_{n}) + f(x_{n+1})] \right)$
= $\frac{\Delta x}{2} \left(f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n}) + f(x_{n+1}) \right)$

$$\int_{a}^{b} f(x) \, dx = \frac{\Delta x}{2} \left(f(x_1) + 2 \sum_{k=2}^{n} f(x_k) + f(x_{n+1}) \right)$$

Error Analysis (MA 428)

Theorem

Assuming $\max_{a \le x \le b} |f''(x)| \le M$. Then the midpoint method has error

$$\frac{M(b-a)(\Delta x)^2}{24}$$

and the Trapezoidal method has error

$$\frac{M(b-a)(\Delta x)^2}{12}$$

Approximate the area under the function using second order curves

Approximate the area under the function using second order curves

1 Divide [a, b] into *n* sub-intervals of width $\Delta x = \frac{b-a}{n}$, where *n* is **even**.

Approximate the area under the function using second order curves

- **1** Divide [a, b] into *n* sub-intervals of width $\Delta x = \frac{b-a}{n}$, where *n* is **even**.
- ② On each pair of sub-intervals $[x_{k-1}, x_k]$ and $[x_k, x_{k+1}]$ $(k = 2, \dots, n)$ approximate the area under the curve with a quadratic function passing through the points:

$$(x_{k-1}, f(x_{k-1})), (x_k, f(x_k))$$
 and $(x_{k+1}, f(x_{k+1}))$

Approximate the area under the function using second order curves

- **1** Divide [a, b] into *n* sub-intervals of width $\Delta x = \frac{b-a}{n}$, where *n* is **even**.
- ② On each pair of sub-intervals $[x_{k-1}, x_k]$ and $[x_k, x_{k+1}]$ $(k = 2, \dots, n)$ approximate the area under the curve with a quadratic function passing through the points:

$$(x_{k-1}, f(x_{k-1})), (x_k, f(x_k))$$
 and $(x_{k+1}, f(x_{k+1}))$

③ The area under each parabola on $[x_{k-1}, x_k]$ and $[x_k, x_{k+1}]$ is

$$\frac{\Delta x}{3} \big(f(x_{k-1}) + 4f(x_k) + f(x_{k+1}) \big)$$

Approximate the area under the function using second order curves

- **1** Divide [a, b] into *n* sub-intervals of width $\Delta x = \frac{b-a}{n}$, where *n* is **even**.
- On each pair of sub-intervals [x_{k-1}, x_k] and [x_k, x_{k+1}] (k = 2, ··· , n) approximate the area under the curve with a quadratic function passing through the points:

$$(x_{k-1}, f(x_{k-1})), (x_k, f(x_k))$$
 and $(x_{k+1}, f(x_{k+1}))$

3 The area under each parabola on $[x_{k-1}, x_k]$ and $[x_k, x_{k+1}]$ is

$$\frac{\Delta x}{3} \big(f(x_{k-1}) + 4f(x_k) + f(x_{k+1}) \big)$$

Summing up over all sub-intervals

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} (f_1 + 4f_2 + 2f_3 + 4f_4 + \dots + 2f_{n-1} + 4f_n + f_{n+1})$$

Error Analysis (MA 428)

Theorem

Assuming $\max_{a \le x \le b} |f^{(4)}(x)| \le M$. Then the Simpson's method has error

$$\frac{M(b-a)(\Delta x)^4}{180}$$

• Composite Simpson's method has a convergence rate of $\mathcal{O}(\Delta x)^4$ compared to Midpoint and Trapezoidal that are $\mathcal{O}(\Delta x)^2$.

Error comparison

• Midpoint and Trapezoidal methods are second order in Δx i.e. $\mathcal{O}((\Delta x)^2)$

• Simpsons method is fourth order in Δx i.e. $\mathcal{O}((\Delta x)^4)$

Generalized formula

Higher order methods of the form

$$\int_a^b f(x) \, dx = \sum_{i=1}^N f(x_i) w_i$$

• These methods can be extended to 2*D* and 3*D* integrals (see MA 428).