Direction Fields

Section 1.1
Falling Sky-diver \(\left(\frac{dy}{dt} = g - \frac{\gamma y}{m} \right) \) : Direction Field

Direction Field for \(y' = 9.8 - 0.6y \)
Falling Sky-diver \((\frac{dy}{dt} = g - \frac{\gamma y}{m}) \): Direction Field

- The arrows represent the slope of the tangent line (acceleration or \(\frac{dy}{dt} \)) at each point in the \(ty \)-plane.
- All solutions converge to the equilibrium solution, \((16\frac{1}{3}) \) m/s
- \(\lim_{t \to \infty} y(t) = 16 \frac{1}{3} \) m/s
Mice population \(\frac{dy}{dt} = rp - k \) : Direction Field
Mice population \(\left(\frac{dy}{dt} = rp - k \right) \) : Direction Field

- The arrows represent the slope of the tangent line (rate of growth of population or \(\frac{dy}{dt} \)) at each point on the ty-plane.
- All solutions diverge from the equilibrium solution.
- If \(y(0) < 900 \), \(\lim_{t \to \infty} y(t) = 0 \) (Mice all die out!)
- If \(y(0) > 900 \), \(\lim_{t \to \infty} y(t) = \infty \) (Mice population explodes!)
The level of activity of certain nerve cells in the brain can be modelled by an ODE

\[y'(t) = -y(t) + \frac{1}{e^{-15(y(t)-0.5-0.3\cos(2\pi t))}} \]

where \(y(t) \) is the percentage of cells that are active at time \(t \).
The level of activity of certain nerve cells in the brain can be modelled by an ODE

\[y'(t) = -y(t) + \frac{1}{e^{15(y(t) - 0.5) - 0.3 \cos(2\pi t)}} \]

where \(y(t) \) is the percentage of cells that are active at time \(t \).

The ODE exhibits 3 equilibrium states!
$y' = y(3 - y)$

Direction Field for $y' = y(3 - y)$
Other Examples

\[y' = e^{-t} + y \]