Demonstration 1: Equation of tangent line - Secant method

Math 251, Calculus I, Spring 2014
Recall the tangent line problem discussed in class:

$$
\text { Find the equation of the tangent line to } y=x^{2} \text { at the point }(1,1)
$$

We solved this problem using the Secant method in the following way:

1. We picked a point Q that lies on the curve $y=x^{2}$. The coordinates of $Q=\left(x, x^{2}\right)$.
2. We used a sequence of secant lines $\overline{P Q}$ with points Q moving closer to P to approximate the slope of the tangent line.
3. We did this for points Q that are to the left and right of P.
4. In doing so we recognized that we had actually computed our first limt

$$
\lim _{x \rightarrow 2} \frac{x^{2}-1}{x-1}=2
$$

The attached plot is a graphical demonstration of the secant method outlined above. As you move the slider for the variable a you can see that the slope of the secant line approaches the slope of the tangent line from the left. Similarly as you move the slider for b you notice that the slope of the secant line approaches the slope of the tangent line.

