Final Exam Review

Math 251.01(02), Calculus I, Spring 2014
In addition to the review from Exams 1 and 2 you are also responsible for the following material:

1. Applications of differentiation

(a) Maxima and minima of functions - Be able to find extreme values of continuous functions on closed intervals.
(b) Curve sketching - local maxima/minima, second derivative test, determine concavity from second derivative information.
(c) Indeterminate forms and L'Hopital's Rule
(d) Optimization problems

Practice Problems

(a) Section 4.1 - 3,5,7,9,30,43,49,54,55,61
(b) Section $4.2-1,9,17,18$
(c) Section $4.3-8,9,12,46$
(d) Section $4.4-7,11,13,30,56,57$
(e) Section 4.7 - 16,19,28,58

2. Integral Calculus

(a) Antiderivatives - rules for basic functions
(b) The area problem - estimate the area under the curve of $y=f(x)$ using Riemann Sums.
(c) Recognize that the area under a curve from a point $x=a$ to $x=b$ is the definite integral $\int_{a}^{b} f(x) d x$.
(d) Evaluate integrals - understand the distinction between definite and indefinite integrals.
(e) Fundamental Theorem of Calculus (FTC) - Suppose f is a continuous function on $[a, b]$ then:
i. Part I - If we define $g(x)=\int_{a}^{x} f(t) d t$ then $g^{\prime}(x)=f(x)$.
ii. Part II - $\int_{a}^{b} f(x) d x=F(b)-F(a), F$ is the antiderivative of f.
(f) Substitution rule.

Practice Problems

(a) Section 5.1-5
(b) Section $5.2-34,39$
(c) Section $5.3-39,40,41,59$
(d) Section $5.4-11,22,29$
(e) Section $5.5-3,5,8,9,18,44,45$

Practice Exam

1. Consider the graph of $y=f(x)$ shown below

(a) State the Domain and Range of f.
(b) Use the graph of f to determine the following:
i. $\lim _{x \rightarrow 2} f(x)$
ii. $\lim _{x \rightarrow 0} f(x)$
iii. $\lim _{x \rightarrow 1} 2 f(x)$
(c) State with reasons the numbers where f is not differentiable.
(d) State with reasons the numbers where f is not continuous.
(e) Find $\int_{-1}^{1} f(x) d x$
2. State the definition of the derivative of a function f.
(a) Use the definition of the derivative to find the derivative of $f(x)=\sqrt{x}$.
3. Use limit laws to calculate the following limits:
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}$
(b) $\lim _{x \rightarrow \infty}\left(e^{-x}+\sin x\right)$
(c) Suppose $4 x-9 \leq f(x) \leq x^{2}-4 x+7, \quad x \geq 0$. Find $\lim _{x \rightarrow 4} f(x)$.
(HINT: Squeeze theorem)
(d) $\lim _{x \rightarrow 0}(1-4 x)^{\frac{1}{x}}$
4. Find $\lim _{x \rightarrow 0^{+}} 2 x \cot x$
5. Find the derivative for each of the following functions:
(a) $y=\frac{\sqrt{x}}{1+e^{-2 x}}$
(b) $y=\sin \left(e^{x}\right)+e^{\sin x}$
(c) $y=(2 x)^{x}$
(d) $y=\ln \left(\cos ^{2} x\right)$
6. Find the equation of the tangent line to the curve $\sin (x+y)=2 x-2 y$ at (π, π).
7. Consider the function $F(x)=x^{4}-4 x^{3}$,
(a) State the domain of F.
(b) Find and classify the critical points of F.
(c) On what intervals if F increasing? decreasing?
(d) Does F have any inflection points? On what intervals is F concave up? concave down?
(e) Sketch a detailed graph of F in the space provided. i.e label the coordinates of critcal points, infection points, and intercepts.
8. Find the point on the line $y=2 x+3$ that is closest to the origin.
9. Set up the Riemann sum to estimate the area under the graph of $y(x)=16-x^{2}$ between $x=2$ and $x=4$ using 4 approximating rectangles and the left endpoint rule.
10. You are filling up a cylindrical tank with a radius of 5 m with water at a rate of $3 \mathrm{~cm}^{3} / \mathrm{min}$. Unbeknownst to you the tank has a hole and is leaking at a rate of $1 \mathrm{~cm}^{3} / \mathrm{min}$! How fast is the height of the water increasing?
The volume of a cylinder $V=\pi r^{2} h$.
11. Find the derivative of $g(x)=\int_{0}^{\ln (x)} e^{\sin x} d x$.
12. A bee moves in a straight line and has acceleration given by $a(t)=6 t+4$. Its initial velocity is $v(0)=-6 \mathrm{~cm} / \mathrm{s}$ and its initial displacement $s(0)=9 \mathrm{~cm}$. Find the position function of the bee $s(t)$.
13. Evaluate the following integrals
(a) $\int_{1}^{4} \frac{\sqrt{x}-x}{x^{2}} d x$
(b) $\int \cos ^{2} \theta \sin \theta d \theta$
(c) $\int \frac{\sin (\ln x)}{2 x} d x$
