Some hints to the homework

Section 2.6; $20 \lim _{t \rightarrow \infty} \frac{t-t \sqrt{t}}{2 t^{3 / 2}+3 t-5}$ - Divide by the highest power of t which in this case is $t^{3 / 2}$ and use the fact that in the limit as $t \rightarrow \infty \frac{1}{t^{r}} \rightarrow 0$ for any power r.

Section 2.6; $22 \lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+1}}$ - In this case the highest power of x in the denominator is x^{2} becareful with your algebra. You should take the limit of:

$$
\frac{x^{2} / x^{2}}{\left(\sqrt{x^{4}+1}\right) / x^{2}}
$$

Section 2.6; $33 \lim _{x \rightarrow \infty} \arctan e^{x}$ - This is a little bit tricky! … BUT recall this FACT from class for compositions of continuous functions we can "move the limit inside" so that

$$
\lim _{x \rightarrow \infty} \arctan \left(e^{x}\right)=\arctan \left(\lim _{x \rightarrow \infty} e^{x}\right)
$$

We know that $\lim _{x \rightarrow \infty} e^{x}=\infty$ now think about what happens to $\arctan x$ as $x \rightarrow$ ∞ ? Remember that $\arctan x$ is $\tan ^{-1}(x)$ a graph can be found on page 133 in your book!

Section 2.6; 38 Same strategy as \#38!

$$
\lim _{x \rightarrow 0^{+}} \tan ^{-1}(\ln (x))=\tan ^{-1}\left(\lim _{x \rightarrow 0^{+}}(\ln x)\right)
$$

Now think about $\lim _{x \rightarrow 0^{+}} \ln x$ What is this limit- again think about the graph of $\ln x$!

Section 2.7; 7 This is the last concept we have covered in class: - REMEMBER, the slope of the tangent line is the limit of the slopes of secant lines passing through $P=(1,1)$ and $Q=(x, \sqrt{x})$ as $Q \rightarrow P$. Now if you write down the slope of the secant line you should get:

$$
m_{P Q}=\frac{\Delta y}{\Delta x}=\frac{\sqrt{x}-1}{x-1}
$$

Now formulate a limit to calculate the slope of the tangent line and then write down the equation of that line.

