REVIEW

Math 251, Calculus I, Spring 2014
The following material is covered in prerequisites for this course.

Basic Algebra

1. Fractions: Recall fractions are numbers of the form $\frac{a}{b}$ for any real numbers a and b. The following are basic fraction manipulations:

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & =\frac{a d+b c}{b d} \\
\frac{a}{b}-\frac{c}{d} & =\frac{a d-b c}{b d} \\
\frac{a}{b} \cdot \frac{c}{d} & =\frac{a c}{b d} \\
\frac{a}{b} \div \frac{c}{d} & =\frac{a}{b} \cdot \frac{d}{c}
\end{aligned}
$$

Example 1 Simplify the following into a single fraction
(a) $\frac{1}{2}+\frac{1}{x}$
(b) $x\left(\frac{1+\frac{1}{x}}{x+\frac{1}{x}}\right)$

Solution:

(a) $\frac{1}{2}+\frac{1}{x}=\frac{x+2}{2 x}$
(b) $x\left(\frac{1+\frac{1}{x}}{x+\frac{1}{x}}\right)=x\left(\frac{\frac{x+1}{x}}{\frac{x^{2}+1}{x}}\right)=x\left(\frac{x+1}{x} \cdot \frac{x}{x^{2}+1}\right)=\frac{x^{2}+x}{x^{2}+1}$
2. Equation of a line: We recall 2 forms of the equation of a line:
$y=m x+b$ slope-intercept form $(m=$ slope, $b=$ intercept $)$
$y=m\left(x-x_{0}\right)+y_{0}$ point-slope form $\left(m=\right.$ slope, $\left(x_{0}, y_{0}\right)-$ a given point on the line $)$
3. Laws of Exponents: We consider exponential numbers (i.e numbers of the form $\left.a^{b}\right)$. Recall the following:

$$
\begin{aligned}
a^{-b} & =\frac{1}{a^{b}} \\
a^{1 / b} & =\sqrt[b]{a} \\
\left(a^{n}\right)^{m} & =a^{n m} \\
a^{n} a^{m} & =a^{n+m} \\
\frac{a^{n}}{a^{m}} & =a^{n-m} \\
(a b)^{n} & =a^{n} b^{n}
\end{aligned}
$$

Note that in general:

$$
\begin{aligned}
(x+y)^{2} & \neq x^{2}+y^{2} \\
\sqrt{x+y} & \neq \sqrt{x}+\sqrt{y}
\end{aligned}
$$

Example 2 Use rules of exponents to simplify the following.
(a) $(-2)^{4}$
(b) $\frac{x^{17}}{x^{20}}$
(c) $4^{3 / 2}$
(d) $\sqrt{36 x^{4}}$

Solution

(a) $(-2)^{4}=(-2)(-2)(-2)(-2)=16$
(b) $\frac{x^{17}}{x^{20}}=\frac{1}{x^{3}}$
(c) $4^{3 / 2}=(\sqrt{4})^{3}=8$
(d) $\sqrt{36 x^{4}}=6 x^{2}$
4. Factoring expressions: Recall the following:
(a) To factor is to write an expression as a product of 2 or more terms.

For example we can factor:

$$
x^{3}-x \text { as } x\left(x^{2}-1\right)=x(x+1)(x-1)
$$

(b) Factoring is an important technique to use to solve equations. For example, to solve the equation $x^{3}-x=0$ we factor the left hand-side:

$$
\begin{array}{r}
x^{3}-x=0 \\
x(x+1)(x-1)=0
\end{array}
$$

At this point we recall that if $x(x+1)(x-1)=0$ then either $x=0$ or $(x+1)=0$ or $(x-1)=0$ therefore the equation has 3 solutions $x=0,-1,1$.
(c) Recall that for quadratic equations $a x^{2}+b x+c$ we can always use the quadratic formula to solve for the roots:

$$
a x^{2}+b x+c=0 \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Functions

1. Function Notation: Recall the most common function notation " $f(x)$ ". In this notation f is a function that takes in as input a number x in a set called the Domain of the function and outputs a number $f(x)$ in the Range of the function.

Example 3 Given $f(x)=x^{2}+1$
Find:
(a) Find $f(2)$
(b) Find $f(x+h)$
(c) Find $f(3 x)$

Solution:

(a) $f(2)=2^{2}+1=5$
(b) $f(x+h)=(x+h)^{2}+1=x^{2}+2 h x+h^{2}+1$
(c) $f(3 x)=(3 x)^{2}+1=9 x^{2}+1$
2. Function Combinations: Recall that we can combine functions to obtain new functions.

Example 4 Let $f(x)=3 x^{2}+1$ and $g(x)=\cos (x)$.
(a) Find a formula for $f(x)+g(x)$.
(b) Find $f(\pi)-g(\pi)$.
(c) Find a formula for $f(x) /(g(x))^{2}$.
(d) Find $f(g(x))$.

Solution:

(a) $f(x)+g(x)=3 x^{2}+1+\cos (x)$.
(b) $f(\pi)-g(\pi)=3(\pi)^{2}+1+\cos (\pi)=3 \pi^{2}+1-1=3 \pi^{2}$
(c) $f(x) /(g(x))^{2}=\frac{3 x^{2}+1}{(\cos (x))^{2}}=\frac{3 x^{2}+1}{\cos ^{2}(x)}$.
(d) $f(g(x))=3(\cos (x))^{2}+1=3 \cos ^{2}(x)+1$
3. Piecewise Functions A piecewise function is one for which parts of the domain are defined by different functions.

Example 5 Let $f(x)$ be defined by the following

$$
f(x)= \begin{cases}x^{2} & \text { if } x<0 \\ -x^{2} & \text { if } 0<x \leq 3 \\ e^{x-2} & \text { if } 3<x\end{cases}
$$

4. Special Functions

(a) Polynomials:

- Sums of powers of x (using only whole numbers) along with coefficients.
- Examples $-5 x^{2},-3 x+5,-3 x^{2}+2 x+1$.
- In general we can write polynomials are of the form $a_{n} x^{n}+\cdots a_{1} x+a_{0}$ where a_{i} are the coefficients.
(b) Exponential and Logarithmic Functions:
- Functions of the form a^{x} for any constant a, (e.g $\left.2^{x}, 10^{x},(1 / 2)^{x}, e^{x}\right)$.
- Logarithmic functions: functions of the form $\left(\log _{2}(x), \log _{10}(x), \ln (x)\right)$.
(c) Trigonometric Functions We will measure an angle θ in radians. The radian measure of an angle θ is

$$
\theta \mathrm{rad}=\frac{s}{r}
$$

were s is the arc length and r is the radius of the sector with angle θ.
Example 6 i. Use a circle of radius 1 to calculate the radian measure of 360 degrees.
ii. Find the radian equivalents of the following angles.

$$
0,30,45,60,90,180,270
$$

Solution

i. We have a circle of radius $r=1$ therefore $s=2 \pi$. The radian measure of 360

$$
\theta=\frac{2 \pi}{1}=2 \pi \mathrm{rad}
$$

ii. Converting between degrees and radians

$$
\begin{aligned}
360^{\circ}=2 \pi \mathrm{rad} & \times \frac{1}{2} \Longrightarrow 180^{\circ}=\pi \mathrm{rad} \\
180^{\circ}=\pi \mathrm{rad} & \times \frac{1}{2} \Longrightarrow 90^{\circ}=\frac{\pi}{2} \mathrm{rad} \\
180^{\circ}=\pi \mathrm{rad} & \times \frac{1}{6} \Longrightarrow 30^{\circ}=\frac{\pi}{6} \mathrm{rad} \\
90^{\circ}=\frac{\pi}{2} \mathrm{rad} & \times \frac{1}{2} \Longrightarrow 45^{\circ}=\frac{\pi}{4} \mathrm{rad} \\
90^{\circ}=\frac{\pi}{2} \mathrm{rad} & \times 3 \Longrightarrow 270^{\circ}=\frac{3 \pi}{2} \mathrm{rad}
\end{aligned}
$$

iii.

Values of basic trigonometric functions
Example 7 Using a right angled triangle with sides of length 1, $\sqrt{3}$ and hypotenuse 2 fill in the following table:

$\sin \left(\frac{\pi}{6}\right)$	$=$	$\sin \left(\frac{\pi}{3}\right)$	$=$
$\cos \left(\frac{\pi}{6}\right)$	$=$	$\sin \left(\frac{\pi}{3}\right)$	$=$
$\tan \left(\frac{\pi}{6}\right)$	$=$	$\tan \left(\frac{\pi}{3}\right)$	$=$

Solution:

$\sin \left(\frac{\pi}{6}\right)$	$=1 / 2$	$\sin \left(\frac{\pi}{3}\right)$	$=\sqrt{3} / 2$
$\cos \left(\frac{\pi}{6}\right)$	$=\sqrt{3} / 2$	$\sin \left(\frac{\pi}{3}\right)$	$=1 / 2$
$\tan \left(\frac{\pi}{6}\right)$	$=1 / \sqrt{3}$	$\tan \left(\frac{\pi}{3}\right)$	$=\sqrt{3}$

Example 8 Using a right angled triangle with sides of length 1, 1 and hypotenuse $\sqrt{2}$ fill in the following table:

$\sin \left(\frac{\pi}{4}\right)$	$=$
$\cos \left(\frac{\pi}{4}\right)$	$=$
$\tan \left(\frac{\pi}{4}\right)$	$=$

Solution:

$\sin \left(\frac{\pi}{4}\right)$	$=1 / \sqrt{2}$
$\cos \left(\frac{\pi}{4}\right)$	$=1 / \sqrt{2}$
$\tan \left(\frac{\pi}{4}\right)$	$=1$

