Exam 1 Review

Math 251.01(02), Calculus I, Spring 2014

- Functions

1. The definition of a function
2. Determining the domain and range of a function from a graph or the formula of the given function.
3. When is a curve in the $x y$ plane the graph of a function? - It must pass the vertical line test.
4. Graphs of common functions covered in class including piecewise functions
5. Inverse of a function - when is a function f invertible? (It must pass the horizontal line test!)

Practice Problems:

1. Section 1.1: 7-10,31-37,49
2. Section 1.3: 2, 29

- Limits

1. The tangent problem - recall that the slope of a tangent line of $y=f(x)$ at a point P is the limit of the slopes of secant lines passing through P and another point Q that lies on the graph.
2. Find $\lim _{x \rightarrow a} f(x)$ from a graph of the function.
3. Find limits using limit calculation laws.
4. Limits at infinity and horizontal asymptotes
5. In general if a limit does not exist you should be able to clearly justify why it does not exist. For example by comparing the left and right-hand limits at a given point or in some cases the function osscilates (recall the example of $\lim _{x \rightarrow 0} \sin (1 / x)$ - we said the limit does not exist because the function osscilates between -1 and 1 as $x \rightarrow 0$

Practice Problems:

1. Find the equation of the tangent line to $y=\frac{1}{1-x}$ at the point $P=(2,-1)$ (Use limit laws for calculating your limit)
2. Given that the displacement of a particle $s(t)=\sqrt{t}$. Find the instantaneous velocity of the particle at $t=1$. (Again, use limit laws to compute any limits)
3. Section 2.2: 4,6,8,12,15,31
4. Section 2.3: 1,14,19,22,27,32,37

- Continuity

1. Definitions: continuity, left and right continuity at a point.
2. Be able to classify the different types of discontinuities
3. Be able to justify why a function is discontinuous at a given point - The easiest strategy for this is to appeal to the definition (A function is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.
4. Be able to prescribe ways of fixing removable discontinuities and other discontinuous piecewise functions (see problem 45 in Section 2.5)
5. Intermediate value theorem - Given a function $y=f(x)$ can you determine whether the function f has a root on a given interval.

Practice Problems

1. Section 2.5: $3,4,11,18,23,45,51,5$

- Derivatives

1. The definition of the derivative of f at a point a denoted $f^{\prime}(a)$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

2. Calculate the derivative of a function from the definition
3. Use the derivative to find the instantaneous velocity given a displacement function.

Practice Problems

1. Section 2.7: 5,17,23

Sample Exam

1. (a) State the domain and range of the function f.
(b) Use the graphs of f and g to evaluate $\lim _{x \rightarrow 4}[f(x)+g(x)]$.
(c) Use the graphs of f to evaluate $\lim _{x \rightarrow 2}[3 f(x)]$.
(d) State the numbers at which f discontinuous. For each number state whether f is continuous from the right, or from the left or neither.
(e) Is the function f invertible? Explain.
2. The graph of the function $y=\sqrt{x}$ is shown below:

(a) Draw the tangent line to $f(x)=\sqrt{x}$ at $x=1$.
(b) Find the equation of the tangent line to $y=\sqrt{x}$ at $x=1$.
3. Evaluate the following limits. If a limit does not exist justify your reasoning.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}$
(b) $\lim _{x \rightarrow-1} \frac{x-3}{x^{2}-2 x-3}$
(c) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \cos \left(\frac{1}{x}\right)$
(d) $\lim _{x \rightarrow \infty}\left(e^{-x}+2 \sin (\pi x)\right)$
(e) $\lim _{x \rightarrow \infty} \frac{\sqrt{x}+5}{3 \sqrt{x}-2}$
4. Show that $4 x^{3}+6 x^{2}+3 x-2=0$ has a root on the interval $(0,1)$.
5. Let $H(x)=\frac{x^{2}-x-2}{x-2}$ and $G(x)=x+1$.
(a) Is $G(x)=H(x)$?
(b) Is the function $H(x)$ continuous on $(-\infty, \infty)$? If not how can $H(x)$ be made continuous?
6. Let

$$
f(x)= \begin{cases}c \cos (x)+e & \text { if } x<\pi \\ x & \text { if } x \geq \pi\end{cases}
$$

Find the value of c that makes the function f continuous on $(-\infty, \infty)$.
7. A projectile moves in a straight line. Its displacement at time t is given by the function $s(t)=\frac{1}{1+t}$.
(a) Find the average velocity on the interval $[1,2]$.
(b) State the definition of the derivative of a function s at a point $t=a$.
(c) Find the instantaneous velocity of the projectile at $t=1$.

