Solutions to some suggested problems

MATH 251.03(04), CALCULUS I, FALL 2013

- Our first exam will cover Sections 1.1, 1.5, 1.5 to Section 2.1-2.7 excluding Section 2.4 with greater emphasis on Chapter 2.
- You are responsible for all materials covered in the lecture, homework problems quiz problems and the following list of suggested problems Section 1.1: 4, 7-10,31-37,43,45,51,53,61,63,79,80 Section 1.3: 4,18,24,28,32,38,43,52,55 Section 1.5: 1,11,14,16,19,21,30 Section 2.1: 1,3,8 Section 2.2: 4,5,7,8,11,12,15-18,29,30 Section 2.3: 2,4,5,9,11-32,37,47,48,49 Section 2.5: 3,4,5-8,17,18-20,23,24,45,51,54 Section 2.6:3,5,7,13,15-38 Section 2.7:1,7,13,16,17,18,21,22,27-32,39,40
- Section 2.2 #4 a $\lim_{x\to 2^-} f(x) = 3$ b $\lim_{\to 2^+} f(x) = 1$ c Since the right and left hand limits do not agree $\lim_{x\to 2} (f(x))$ does not exist. d f(2) = 4e $\lim_{x\to 4} f(x) = 4$ f f(4) does not exist. Section 2.2 #8 a $\lim_{x\to 2} R(x) = -\infty$ b $\lim_{x\to 5} R(x) = \infty$ c $\lim_{x\to -3^-} R(x) = -\infty$ d $\lim_{x\to -3^+} R(x) = \infty$

Section 2.2 #12 $\lim_{x\to a} f(x)$ exists for all a except at $a = \pi$.

Section 2.2 #30

$$\lim_{x \to -3^-} \frac{x+2}{x+3} = \infty$$

because the numerator is negative and the denominator approaches 0 from the negative side as $x \to -3^-$.

Section 2.3 #4 Ans = -4. Just plug in!

Section 2.3 #12 Ans $=\frac{4}{5}$. Factor the numerator and denominator and cancel (x - 4). Section 2.3 #14 Ans = limit does not exist since:

$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4} = \lim_{x \to -1} \frac{x}{x + 1}$$

which does not exist because $\lim_{x\to -1} \frac{x}{x+1}$ is $-\infty$ from the right and $+\infty$ from the left! Section 2.3 #16 Ans $=\frac{1}{4}$ Section 2.3 #18 Ans = 12 Section 2.3 #20 Ans $=\frac{4}{3}$ Hint : $t^3 - 1 = (t - 1)(t^2 + t + 1)$ and $t^4 - 1 = (t^2 - 1)(t^2 + 1)$. Section 2.3 #22 Ans $=\frac{2}{3}$ Section 2.3 #24 Ans = 0. Section 2.3 #26 Ans = 1. Section 2.3 #28 Ans = $-\frac{1}{\alpha}$ Section 2.3 #30 Ans $= -\frac{4}{5}$ Section 2.3 #32 Ans $= -\frac{2}{m^3}$. Section 2.5 # 4 g is continuous on [-4, -2), (-2, 2), [2, 4), (4, 6) and (6, 8). Section 2.5 #18 f(-2) = 1 but $\lim_{x \to -2^{-}} f(x) = -\infty$ and $\lim_{x \to -2^{+}} f(x) = \infty$, so $\lim_{x \to -2^{-}} f(x)$ does not exist and f is discontinuous at -2. Section 2.5 #20 $\lim_{x\to 1} f(x) = \frac{1}{2}$ but f(1) = 1 so f is discontinuous at x = 1. Section 2.5 #24 f is continuous at x = 2. Section 2.5 #45 f is continuous on $(-\infty, 2)$ and $(2, \infty)$. Now $\lim_{x\to 2^{(-)}} f(x) = \lim_{x\to 2^-} (cx^2 + 2x) = cx^2 + 2x$ 4c + 4 and $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (x^3 - cx) = 8 - 2c$. If f is to be continuous these 2 limits should match so we have to find c such that 4c + 4 = 8 - 2c. Solve for c Ans $=\frac{2}{3}$. Section 2.6 #16 Ans =0. Section 2.6 #18 Ans =2 Section 2.6 #20 Ans $=\frac{-1}{2}$ Section 2.6 #22 Ans =1 Section 2.6 #24 Ans =-3Section 2.6 #26 Ans =-1 Hint: multiply by $\frac{x - \sqrt{x^2 + 2x}}{x - \sqrt{x^2 + 2x}}$

Section 2.6 #28 Ans $=\infty$

Section 2.6 #30 Ans = Limit does not exist! Notice that $\lim_{x\to\infty} = 0$, but $\lim_{x\to\infty} 2\cos(3x)$ does not exist because the values of $2\cos(3x)$ oscillate between [-2, 2] as $x \to \infty$.

Section 2.6 #32 Ans = ∞

Section 2.7 #28 Ans $= 6a^2 + 1$.

Section 2.7 #30 Ans $= \frac{-2}{a^3}$.

Section 2.7 #32 Ans $=\frac{2}{(1-a)^{3/2}}$