Theorem 14 (L'Hospital's Rule). If $\lim \frac{f(a)}{g(a)}$ equals $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$ (and $\lim \frac{f'(x)}{g'(x)}$ equals a finite number or $\pm \infty$) then $f(x) = \frac{f'(x)}{g'(x)}$

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

Comment. (1) In the previous statement, and the ones that follow, "lim" means any of the following

$$\lim \text{ means } \lim_{\substack{x \to a}, \ x \to a^+}, \lim_{\substack{x \to a^- \\ \lim \\ x \to \infty}, \ x \to -\infty}, \lim_{x \to -\infty}$$

(2) Note that you do *not* take the quotient rule, and you do *not* take the derivative of $\frac{1}{g(x)}$, but rather the derivative of g(x) all by itself. For example, applying L'Hospital's rule to $\frac{\ln(x)}{x}$ gives $\frac{1/x}{1}$.

Corollary (Variations). There are three common variations of L'Hospital's Rule.

(1) Finding $\lim f(x) \cdot g(x)$.

If $\lim f(x) \cdot \lim g(x)$ equals $0 \cdot \infty$ or $\infty \cdot 0$ then rewrite f(x)g(x) as one of the following fractions

$$f(x)g(x) = rac{f(x)}{1/g(x)}$$
 or $rac{g(x)}{1/f(x)}$

and apply L'Hospital's rule to the fraction.

(2) Finding $\lim(f(x) - g(x))$.

If $\lim f(x) - \lim g(x)$ equals $\infty - \infty$ then rewrite f(x) - g(x) as a single fraction and apply L'Hospital's rule.

(It's not always obvious how to turn f(x) - g(x) into a fraction. If f(x) or g(x) is a fraction (including $\sec(x)$, $\tan(x)$, etc.), then combine both terms with a common denominator. If f(x) or g(x) has a square root, write $\frac{f(x) - g(x)}{1}$ and then conjugate this fraction.)

(3) Finding $\lim f(x)^{g(x)}$.

If $(\lim f(x))^{(\lim g(x))}$ equals 0^0 or 1^∞ or ∞^0 , then do:

- (a) Set $y = f(x)^{g(x)}$
- (b) Take \ln to get $\ln(y) = g(x) \ln(f(x))$
- (c) Find $\lim g(x) \cdot \ln(f(x))$.
- (d) Give the final answer

 $\lim y = \lim e^{\ln(y)} = e^{\lim \ln(y)} = e^{\lim g(x) \ln(f(x))}.$