Issues with inverse tangent for Polar, Cylindrical and Spherical Coordinates

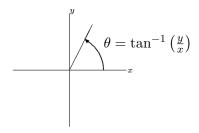
In Polar Coordinates (and thus in Cylindrical and Spherical Coordinates), we have the formula

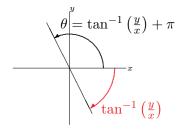
$$\tan \theta = \frac{y}{x}.$$

The angle θ needs to be between 0 and 2π radians, but $\tan^{-1} \frac{y}{x}$ gives us the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. Thus just using $\tan^{-1} \frac{y}{x}$ only works if the angle is in QI of the xy-plane, i.e., if x and y are both positive. We need to adjust if our angle is in QII, QIII or QIV.

$$\theta \in QI: (x > 0, y > 0)$$

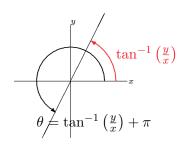
$$\theta \in QII: (x < 0, y > 0)$$

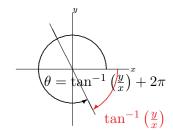




$$\theta \in \text{QIII: } (x < 0, y < 0)$$

$$\theta \in \text{QIV: } (x > 0, y < 0)$$





Note: For spherical coordinates, $\phi \in [0, \pi]$ and if we use the formula $z = \rho \cos \phi$, $\cos^{-1} \left(\frac{z}{\rho}\right)$ will give us the correct angle. Thus there aren't any issues with ϕ as there are with θ .