
 1

MA 302: MATLAB Laboratory, Spring 2004

Graphics in MATLAB: An Overview1

1. BASIC PLOTTING

Creating a Plot

The plot function has different forms, depending on the input arguments. If y is a vector, plot(y)
produces a piecewise linear graph of the elements of y versus the index of the elements of y. If you
specify two vectors as arguments, plot(x,y) produces a graph of y versus x.

For example, these statements use the colon operator to create a vector of x values ranging from zero to 2,
compute the sine of these values, and plot the result.

>>x = 0:pi/100:2*pi;
>>y = sin(x);
>>plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol π.

>>xlabel('x = 0:2\pi')
>>ylabel('Sine of x')
>>title('Plot of the Sine Function','FontSize',12)

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x = 0:2π

Sine of x

Plot of the Sine Function

Multiple Data Sets in One Graph

Multiple x-y pair arguments create multiple graphs with a single call to plot. MATLAB automatically
cycles through a predefined (but user settable) list of colors to allow discrimination between each set of
data. For example, these statements plot three related functions of x, each curve in a separate
distinguishing color.

>>x = 0:pi/100:2*pi;
>>y2 = sin(x-.25);
>>y3 = sin(x-.5);

1 Based on excerpts from the MATLAB online help feature.

 2

>>plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots.

>>legend('sin(x)','sin(x-.25)','sin(x-.5)')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
sin(x)
sin(x-.25)
sin(x-.5)

Plotting Lines and Markers

If you specify a marker type but not a linestyle, MATLAB draws only the marker. You may also want to
use fewer data points to plot the markers than you use to plot the lines.

For example,

>>x1 = 0:pi/100:2*pi;
>>x2 = 0:pi/10:2*pi;
>>plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

This plot shows the data twice using a different number of points for the dotted line and marker plots.

Imaginary and Complex Data

When the arguments to plot are complex, the imaginary part is ignored except when plot is given a single
complex argument. For this special case, the command is a shortcut for a plot of the real part versus the
imaginary part. Therefore, plot(Z) where Z is a complex vector or matrix, is equivalent to
plot(real(Z),imag(Z))

For example,

 3

>>t = 0:pi/10:2*pi;
>>plot(exp(i*t),'-o')
>>axis equal

draws a 20-sided polygon with little circles at the vertices. The command, axis equal, makes the
individual tick mark increments on the x- and y-axes the same length, which makes this plot more circular
in appearance.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Adding Plots to an Existing Graph

The hold command enables you to add plots to an existing graph. When you type hold on MATLAB
does not replace the existing graph when you issue another plotting command; it adds the new data to the
current graph, rescaling the axes if necessary.

For example,

>>t=-1:0.01:1;
>>y=t.^2+2*t-1;
>>plot(t,y)
>>hold
Current plot held
>>w=cos(t);
>>plot(t,w)

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

The hold on command causes the color of the plot to match with the existing plot in the figure.

 4

Multiple Plots in One Figure

The subplot command enables you to display multiple plots in the same window or print them on the
same piece of paper. Typing subplot(m,n,p) partitions the figure window into an m-by-n matrix of
small subplots and selects the pth subplot for the current plot. The plots are numbered along first the top
row of the figure window, then the second row, and so on. For example, these statements plot graphs in
four different subregions of the figure window.

>>t = -pi:2*pi/100:pi;
>>f1=sin(t.^2);
>>f2=(sin(t)).^2;
>>f3=cos(t.^2);
>>f4=(cos(t)).^2;
>>subplot(2,2,1);plot(t,f1);
>>title('sin(t^2)')
>>subplot(2,2,2);plot(t,f2);
>>title('sin(t)^2')
>>subplot(2,2,3);plot(t,f3);
>>title('cos(t^2)')
>>subplot(2,2,4);plot(t,f4);
>>title('cos(t)^2')

-5 0 5
-1

-0.5

0

0.5

1
sin(t2)

-5 0 5
0

0.2

0.4

0.6

0.8

1
sin(t)2

-5 0 5
-1

-0.5

0

0.5

1
cos(t2)

-5 0 5
0

0.2

0.4

0.6

0.8

1
cos(t)2

Polar and logarithmic plots

To obtain a plot in polar coordinates, we use the command polar. For example, to plot the function

23cos (/2) , 0 2r θ θ θ π= + ≤ ≤ , we type

>> t=0:0.01:2*pi;
>> r=3*cos(t/2).^2+t;
>> polar(t,r)

 2

 4

 6

 8

 10

30

210

60

240

90

270

120

300

150

330

180 0

 5

Many science and engineering applications require plots in which one or both axes have a logarithmic
scale. The commands for these are loglog, semilogy and semilogx. For example,

>> x=0:.25:10;
>> y=2*exp(-2*x);
>> subplot(2,2,1)
>> plot(x,y,'b')
>> title('x vs y')
>> subplot(2,2,2)
>> loglog(x,y,'r')
>> title('log(x) vs log(y)')
>> subplot(2,2,3)
>> semilogy(x,y,'k')
>> title('x vs log(y)')
>> subplot(2,2,4)
>> semilogx(x,y,'c')
>> title('log(x) vs y')

0 5 10
0

0.5

1

1.5

2
x vs y

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
5 log(x) vs log(y)

0 5 10
10

-10

10
-5

10
0

10
5 x vs log(y)

10
-1

10
0

10
1

0

0.5

1

1.5
log(x) vs y

Controlling the Axes

The axis command supports a number of options for setting the scaling, orientation, and aspect ratio of
plots. You can also set these options interactively. Type help axis for more information.

By default, MATLAB finds the maxima and minima of the data to choose the axis limits to span this
range. The axis command enables you to specify your own limits: axis([xmin, xmax, ymin,
ymax]), or for three-dimensional graphs, axis([xmin, xmax, ymin, ymax, zmin, zmax])

Use the command axis auto to re-enable MATLAB's automatic limit selection. axis also enables you
to specify a number of predefined modes. For example, axis square makes the x-axes and y-axes the
same length; axis equal makes the individual tick mark increments on the x- and y-axes the same
length. axis auto normal returns the axis scaling to its default, automatic mode.

You can use the axis command to make the axis visible or invisible. axis on makes the axis visible.
This is the default. axis off makes the axis invisible. The grid command toggles grid lines on and
off. The statement grid on turns the grid lines on and grid off turns them back off again.

For example,

>>x=-2:0.01:2;
>>plot(x,exp(-x.^2),'r')
>>grid on

 6

>>axis([-2 2 0 1.25])

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Saving a Figure

To save a figure, select Save from the File menu. To save it using a graphics format, such as JPEG, for
use with other applications, select Export from the File menu. You can also save from the command line
- use the saveas command, including any options to save the figure in a different format.

Using Plot Editing Mode

The MATLAB figure window supports a point-and-click style editing mode that you can use to customize
the appearance of your graph. In plot editing mode, you can use a graphical user interface, called the
Property Editor, to edit the properties of objects in the graph. The Property Editor provides access to
many properties of the root, figure, axes, line, light, patch, image, surfaces rectangle, and text objects. For
example, using the Property Editor, you can change the thickness of a line, add titles and axes labels, add
lights, and perform many other plot editing tasks.

Printing Graphics

You can print a MATLAB figure directly on a printer connected to your computer or you can export the
figure to one of the standard graphic file formats supported by MATLAB. There are two ways to print
and export figures: Using the Print option under the File menu, and using the print command.

Printing from the Menu – There are four menu options under the File menu that pertain to printing:

The Page Setup option displays a dialog box that enables you to adjust characteristics of the figure on the
printed page. The Print Setup option displays a dialog box that sets printing defaults, but does not
actually print the figure. The Print Preview option enables you to view the figure the way it will look on
the printed page. The Print option displays a dialog box that lets you select standard printing options and
print the figure.

Generally, use Print Preview to determine whether the printed output is what you want. If not, use the
Page Setup dialog box to change the output settings. Select the Page Setup dialog box Help button to
display information on how to set up the page.

Exporting Figure to Graphics Files – The Export option under the File menu enables you to export the
figure to a variety of standard graphics file formats (such as JPEF, EPS, etc.).

Using the print Command – The print command provides more flexibility in the type of output sent
to the printer and allows you to control printing from M-files. The result can be sent directly to your
default printer or stored in a specified file. A wide variety of output formats, including TIFF, JPEG,

 7

and PostScript, is available.

For example, this statement saves the contents of the current figure window as color Encapsulated Level 2
PostScript in the file called magicsquare.eps. It also includes a TIFF preview, which enables most word
processors to display the picture

>>print -depsc2 -tiff magicsquare.eps

To save the same figure as a TIFF file with a resolution of 200 dpi, use the command

>>print -dtiff -r200 magicsquare.tiff

If you type print on the command line, print MATLAB prints the current figure on your default printer.

2. MESH AND SURFACE PLOTS

MATLAB defines a surface by the z-coordinates of points above a grid in the x-y plane, using straight
lines to connect adjacent points. The mesh and surf plotting functions display surfaces in three
dimensions. mesh produces wireframe surfaces that color only the lines connecting the defining points;
surf displays both the connecting lines and the faces of the surface in color.

Visualizing Functions of Two Variables

To display a function of two variables, z = f (x,y):

Generate X and Y matrices consisting of repeated rows and columns, respectively, over the domain of the
function. Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or two vectors x and y into
matrices X and Y for use in evaluating functions of two variables. The rows of X are copies of the vector x
and the columns of Y are copies of the vector y.

The next example evaluates and graphs the two-dimensional sinc function, sin(r)/r, between the x and y
directions. R is the distance from origin, which is at the center of the matrix.

>>[X,Y] = meshgrid(-8:.5:8);
>>R = sqrt(X.^2 + Y.^2);
>>Z = sin(R)./R;
>>mesh(X,Y,Z,'EdgeColor','black')

-10
-5

0
5

10

-10

-5

0

5
10

-0.5

0

0.5

1

 8

3. SPECIALIZED GRAPHICS

MATLAB supports a variety of graph types that enable you to present information effectively. The type
of graph you select depends, to a large extent, on the nature of your data. The following list can help you
select the appropriate graph:

• Bar and area graphs are useful to view results over time, comparing results, and displaying individual
contribution to a total amount.

• Pie charts show individual contribution to a total amount.
• Histograms show the distribution of data values.
• Stem and stairstep plots display discrete data.
• Compass, feather, and quiver plots display direction and velocity vectors.
• Contour plots show equivalued regions in data.

Bar and area graphs

Bar and area graphs display vector or matrix data. These types of graphs are useful for viewing results
over a period of time, comparing results from different datasets, and showing how individual elements
contribute to an aggregate amount. Bar graphs are suitable for displaying discrete data, whereas area
graphs are more suitable for displaying continuous data.

bar: Displays columns of m-by-n matrix as m groups of n vertical bars

barh: Displays columns of m-by-n matrix as m groups of n horizontal bars

bar3: Displays columns of m-by-n matrix as m groups of n vertical 3-D bars

bar3h: Displays columns of m-by-n matrix as m groups of n horizontal 3-D bars

area: Displays vector data as stacked area plots

For example,

>> x = -2.9:0.2:2.9;
>>bar(x,exp(-x.^2))
>>colormap cool

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pie charts display the percentage that each element in a vector or matrix contributes to the sum of all
elements. pie and pie3 create 2-D and 3-D pie charts.

 9

Here is an example using the pie function to visualize the contribution that three products make to total
sales. Given a matrix X where each column of X contains yearly sales figures for a specific product over a
five-year period,

>>X = [19.3 22.1 51.6; 34.2 70.3 82.4; 61.4 82.9 90.8; 50.5 54.9 59.1; 29.4
36.3 47.0];

Sum each row in X to calculate total sales for each product over the five-year period.

>>x = sum(X);
>>pie(x)
>>colormap summer

25%

34%

42%

Area graphs are useful for showing how elements in a vector or matrix contribute to the sum of all
elements at a particular x location. By default, area accumulates all values from each row in a matrix and
creates a curve from those values. Using this matrix,

>>Y = [5 1 2; 8 3 7; 9 6 8; 5 5 5; 4 2 3];

the statement,

>>area(Y)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

displays a graph containing three area graphs, one per column. The height of the area graph is the sum of
the elements in each row. Each successive curve uses the preceding curve as its base.

Histograms

MATLAB's histogram functions show the distribution of data values. The functions that create
histograms are hist and rose.

hist: Displays data in a Cartesian coordinate system
rose: Displays data in a polar coordinate system

 10

The histogram functions count the number of elements within a range and display each range as a
rectangular bin. The height (or length when using rose) of the bins represents the number of values that
fall within each range.

For example,

>> yn = randn(10000,1);
>>hist(yn)
>> grid

-4 -3 -2 -1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

Discrete Data Graphs

MATLAB has a number of specialized functions that are appropriate for displaying discrete data. This
section describes how to use stem plots and stairstep plots to display this type of data. (Bar charts,
discussed earlier, are also suitable for displaying discrete data.)

stem: Displays a discrete sequence of y-data as stems from x-axis

stem3: Displays a discrete sequence of z-data as stems from xy-plane

stairs: Displays a discrete sequence of y-data as steps from x-axis

For example,

>>alpha = .02; beta = .5; t = 0:4:200;
>>y = exp(-alpha*t).*sin(beta*t);
>> stem(t,y,'k')

0 50 100 150 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

To see how the actual function graph "comes into play", look at:

 11

>> T=0:.1:200;
>> hold
>> Y = exp(-alpha*T).*sin(beta*T);
>> plot(T,Y,'r')

0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Contour Plots

The contour functions create, display, and label isolines determined by one or more matrices.

clabel: Generates labels using the contour matrix and displays the labels in the current figure.

contour: Displays 2-D isolines generated from values given by a matrix Z.

contour3: Displays 3-D isolines generated from values given by a matrix Z.

contourf: Displays a 2-D contour plot and fills the area between the isolines with a solid color.

contourc: Low-level function to calculate the contour matrix used by the other contour functions.

Two other functions also create contours. meshc displays a contour in addition to a mesh, and surfc
displays a contour in addition to a surface.

For example, consider the function z = x exp(– x2 – y2):

>>[X,Y] = meshgrid(-2:.2:2,-2:.2:3);
>>Z = X.*exp(-X.^2-Y.^2);
>> surf(x,y,z)
>> title('z=x e^{(x^2-y^2)}')

-2
-1

0
1

2

-2
-1

0

1

2
-0.5

0

0.5

z=x e(x
2
-y

2
)

 12

The contour plot is given by:

>> [C,f]=contourf(Z);
>>clabel(C,f);
>>colorbar

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

5 10 15 20

5

10

15

20

25

0

0

0

-0.1

-0.1

- 0. 1

-0.1

0. 1

0.1

0.1

0.1

- 0. 2

-0.2

-0.2

0.2
0. 2

0.2

-0.3

-0.3

0.3

0.3

-0.4
0.4

A combination of the two is given by

>> surfc(x,y,z)

-2
-1

0
1

2

-2

-1

0

1
2

-0.5

0

0.5

4. Advanced Topics

Images

Two-dimensional arrays can be displayed as images, where the array elements determine brightness or
color of the images. For example, the statements

>>load durer
>>whos

Name Size Bytes Class
X 648x509 2638656 double array
caption 2x28 112 char array
map 128x3 3072 double array

load the (built-in data) file durer.mat, adding three variables to the workspace. The matrix X is a
648-by-509 matrix and map is a 128-by-3 matrix that is the colormap for this image.

 13

Note MAT-files, such as durer.mat, are binary files that can be created on one platform and later read
by MATLAB on a different platform.

The elements of X are integers between 1 and 128, which serve as indices into the colormap, map. Then

>>image(X)
>>colormap(map)
>>axis image

100 200 300 400 500

100

200

300

400

500

600

reproduces the Dürer's etching. A high resolution scan of the magic square in the upper right corner is
available in another file, called detail.mat. Type

>>load detail

and then use the uparrow key on your keyboard to re-execute the image, colormap, and axis
commands. The statement

>>colormap(hot)

adds some twentieth century colorization to the sixteenth century etching. The function hot generates a
colormap containing shades of reds, oranges, and yellows. Typically a given image matrix has a specific
colormap associated with it. Type help colormap for more information.

50 100 150 200 250 300 350

50

100

150

200

250

300

350

 14

Animations

MATLAB provides two ways of generating moving, animated graphics. The one is by continually
erasing and then redrawing the objects on the screen, making incremental changes with each redraw.
(You can save a number of different pictures and then play them back as a movie.)

Here is an example showing simulated Brownian motion. Specify a number of points, such as

>>n = 20

and a temperature or velocity, such as

>>s = .02

The best values for these two parameters depend upon the speed of your particular computer. Generate n
random points with (x,y) coordinates between –1/2 and +1/2.

>>x = rand(n,1)-0.5;
>>y = rand(n,1)-0.5;

Plot the points in a square with sides at –1 and +1. Save the handle for the vector of points and set its
EraseMode to xor. This tells the MATLAB graphics system not to redraw the entire plot when the
coordinates of one point are changed, but to restore the background color in the vicinity of the point using
an "exclusive or" operation.

>>h = plot(x,y,'.');
>>axis([-1 1 -1 1])
>>axis square
>>grid off
>>set(h,'EraseMode','xor','MarkerSize',18)

Now begin the animation. Here is an infinite while-loop, which you can eventually exit by typing Ctrl+c.
Each time through the loop, add a small amount of normally distributed random noise to the coordinates
of the points. Then, instead of creating an entirely new plot, simply change the XData and YData
properties of the original plot.

>>while 1
 drawnow
 x = x + s*randn(n,1);
 y = y + s*randn(n,1);
 set(h,'XData',x,'YData',y)
end

Creating Movies

If you increase the number of points in the Brownian motion example to something like n = 300 and
s = .02, the motion is no longer very fluid; it takes too much time to draw each time step. It becomes
more effective to save a predetermined number of frames as bitmaps and to play them back as a movie.

First, decide on the number of frames, say

>>nframes = 50;

Next, set up the first plot as before, except using the default EraseMode (normal).

>>x = rand(n,1)-0.5;
>>y = rand(n,1)-0.5;
>>h = plot(x,y,'.');
>>set(h,'MarkerSize',18);

 15

>>axis([-1 1 -1 1])
>>axis square
>>grid off

Generate the movie and use getframe to capture each frame.

>>for k = 1:nframes
 x = x + s*randn(n,1);
 y = y + s*randn(n,1);
 set(h,'XData',x,'YData',y)
 M(k) = getframe;
end

Finally, play the movie 30 times.

>>movie(M,30)

We have only touched the surface here … For more information on ALL of MATLAB's graphics
capabilities see the help menu in the MATLAB window.

