
MA 302 Assignment #5 Spring 18

Due: Wednesday, March 14 at 4 PM

• For this assignment you will create (or fix) 5 files; hw5Ober.m, circle2Ober.m, fern1Ober.m,
and fern2Ober.m, and fern3Ober.m, where “Ober” is replaced by the first four letters
of your last name. You will also be using circleOber.m from your previous assignment.
BECAUSE YOU MAY NEED TO FIX THIS FUNCTION TO GET IT WORKING PROP-
ERLY, RENAME THE (FIXED) FUNCTION TO circle2Ober.m TO USE FOR THIS
ASSIGNMENT.

• This SCRIPT FILE hw5Ober.m should be formatted in such a way to be “publishable” as
a webpage. Your webpage should appear on the G-drive in the same folders as your previous
assignments. Within a browser, copy and paste the URL for your page into Moodle by the due
date/time. NEW: YOU WILL PUBLISH hw5Ober WITH THE INCLUDE CODE OPTION
SET TO “false”. This can be changed under “Edit Publishing Options” on the toolbar menu
or by typing publish('hw5Ober', 'showCode',false) in the command window.

• All other directions are the same as the previous assignment.

TIP 1: running the fern functions will take some time, so do not publish until you know you
have them working, and when you do publish BE PATIENT!

TIP 2: for the last few problems, remember that the output of commands aren’t shown until you
have a %%, so you may want to have lines of just %% between some of the commands so it publishes
a set of commands or comments, then creates output, publishes the next set of commands or
comments, then output, etc.

To turn in:

1. The URL of the HTML file created by publishing your m-file submitted via Moodle. Have
the URL appear in the notes part of turning in the assignment and make it a clickable link.

2. The m-files (both hw5Ober.m and all of the function files) uploaded to Moodle by the due
date/time.

1. Set up

(a) According to the Office of Marketing and Communications, the RGB code for Loyola colors
are as follows:

Name RGB Code variable name

Loyola Green 0-104-87 loygreen

Loyola Gray 200-200-200 loygray

Loyola Gold 250-227-125 loygold

Loyola Red 179-8-56 loyred

Save the LoyolaColors.mat file in the H-drive to your folder/directory and use the
load('LoyolaColors.mat') command to load the vectors that can be used as colors.

(b) One of the shapes we will use in this assignment will be an ellipse made with 100 points
using the parametric equations x = 2 cos(t) and y = 3 sin(t) for an appropriate domain for
t. Set up the vectors of these values (variable names of your choice!) to plot the ellipse
in this problem an in subsequent problems. To test, use the plot command to plot the
ellipse in Loyola Green with a Line Width of 2.

Page 1 of ??

http://www.loyola.edu/department/marketing-communications/guidelines-policies/loyola-brand/logos#colorpalette


MA 302 Assignment #5 Spring 18

2. Visualizing Linear Transformations.

For this problem we will be visualizing some examples of linear transformations. The process
will be the same or similar for all of them, so copy/paste will be your friend. Remember that
using the plot(x,y) command, Matlab “connects the dots” of the points given with x and y

as vectors of the x and y-coordinates of the points. We will use this idea to draw shapes and
the transformed shapes. One of the shapes will be the ellipse discussed in #1b. Note that once
the x and y vectors for the ellipse are created in #1b, as long as those vector names are unique
you don’t need to recreate them in subsequent problems. The other shapes will be made using
your function circleOber2 that is a (fixed) copy of the function created in Assignment #4.

Our shapes will plotted by forming a vector comprised of the x-values and and another com-
prised of the y-values of the points that make up our shapes. Each of our transformations will
be associated with a 2 × 2 matrix A. What the matrices should be for reflections, rotations,
scaling, and compositions are in the lecture/class notes. To visualize the transformation asso-
ciated with a matrix A, we want to calculate Av for each of the points v (which is actually
a column vector) that make up our shapes and store the answer in a new set of points. But
this would be tedious and/or inefficient to do this for each point. Instead, we can do this all
at once to all of the points by using matrix calculations. This is where it is easiest to have the
original points in a 2 × n matrix V (n is determined by the number of points that make up
our shape). If we set up the matrix V so that the first row contains the x-values of the points,
and the second row contains the y-values, then each column of V is one point. The beauty of
matrix multiplication is that T = AV will be all of the points that make up the transformed
shape. For each of the linear transformations we will do the following.

• Formulate the vectors x, y, and matrix V that are composed of the vertices or points of the
specified original shape. Plot the original shape in Loyola Green with Line Width thicker
than the default.

• Figure out what the appropriate matrix A would be for the transformation, and display
that matrix. In other words, when defining the matrix for each transformation, do not
suppress the output so we can see the values in the matrix when it is published. It may
be better to have a unique name for each transformation matrix, instead of A for each
problem.

• Calculate T = AV and plot the transformed shape in the stated color with Line Width
thicker than the default.

• Plot the two stated points (markers) of the original shape in Loyola Green, using the “*”
marker and square marker, respectively. Plot the two transformed markers using the same
shapes, but in the same color as the the transformed shape. Thus you should be able to
see where the markers went under the transformation.

• Use the command axis equal and set the axes appropriately so the edges and points of
the shapes don’t touch the edge of the figure. You may have to experiment with the
order of axis equal and the command(s) to set the axes.

• Use a legend with the titles “Original” and “Transformed” for the 2 shapes, and “1st
marker” and “2nd marker” for the specified points. Note that the order of your plot com-
mands will affect the order the titles should be in the legend! You may want to change
the location of the legend with 'Location', 'Southeast' (or some other location spec-
ification) so you can see all of the figures and legend. (This location may need to change
for different transformations below.) For example,
legend('Sample title1', 'Sample title2', 'Location', 'Southeast').

Page 2 of ??



MA 302 Assignment #5 Spring 18

Perform the above process for each of the following transformations and shapes. Have the text
that is in bold be the title of your figure (first example, title('Reflection Example'))

(a) Reflection Example with θ = π/6. Original shape: the ellipse. Transformed shape in
Loyola Red. First marker is the first point, the second marker is the 25th point. Also
draw the reflection line of the angle θ (easiest to use trig!) as a black, dashed line.

(b) Scaling Examples with c = 1.5. and c = 1/2. Original shape: a hexagon using your
circle2Ober function. Transformed shapes are in Loyola Grey and Loyola Gold, respec-
tively. First marker is the first point, the second marker is the second point. Plot all three
shapes: the original and two transformed, on the same figure.

(c) Rotation Example with θ =?. Original shape: a pentagon. Notice that using your
circle2Ober function to create the pentagon makes the shape “off kilter” or tipped. We
want to orient the pentagon so the bottom side is perfectly horizontal, so we need to rotate
it by an appropriate angle θ. Figure out what θ should equal and use this angle for your
rotation example. Transformed shape should be in Loyola Red. First marker is the first
point, the second marker is the second point.

(d) Two Composition Examples Original shape: a triangle using your circle2Ober.
Transformed shapes are in Loyola Red and Loyola Gold, respectively. First marker is
the first point, the second marker is the second point. The first transformation is a re-
flection about the y-axis (what is θ?) followed by a rotation with θ = π/4. The second
transformation is the rotation and then reflection. Plot all three shapes on the same figure.

(e) Two random transformations Original shape: the ellipse. Transformed shapes are in
Loyola Gray and Loyola Gold. First marker is the first point, the second marker is the
tenth point. The matrix for these random linear transformations are 2 × 2 matrices with
random integer entries from −5 to 5.

(f) Two random transformations Original shape: the square. Transformed shapes are in
Loyola Gray and Loyola Gold. First marker is the first point, the second marker is the
second point. The matrix for these random linear transformations are 2× 2 matrices with
random integer entries from −5 to 5.

3. Visualizing affine transformations For this problem we will be doing the following:

• Save the affineS18.mat file in the H-drive to your folder/directory and use the
load('affineS18.mat') command to load the matrices and vectors for the affine trans-
formations (listed below).

• Draw the hexagon using your circle2Ober in black.

• Calculate the transformed hexagon using the affine transformations below (T1 for first
transformation, T2 for second, etc.).

• Plot the transformed hexagons in Loyola Green, Loyola Red, and Loyola Gold, respectively.

• Use the command axis equal and define the axes to an appropriate view so the hexagons
don’t touch the edge of the figure.

• Have a legend identifying the original, first transformation, etc.

• No axis labels are needed for these graphs.

• The title of the graph should be “Affine Transformations.”

Page 3 of ??



MA 302 Assignment #5 Spring 18

Affine transformations Tk(x) = Mkx + vk, (k = 1, 2, 3) where

M1 =

[
0 1
3 1

]
, v1 =

[
1.5
0

]
, M2 =

[
3 1
0 1

]
, v2 =

[
−1.25
−1.25

]
, M3 =

[
−3 0
2 3

]
, v3 =

[
−1
1

]
(NOTE: your points/vectors x should be a column vectors for this notation).

4. Fern fractals We will create functions fern1Ober.m, fern2Ober.m, and fern3Ober.m that
have as input a positive integer n and optional input variables. The function should check for
the validity of n, if not, return an error. You may use your previous functions to help with this
error check. Optional input variables will be plot specifiers (color, marker size, marker type,
etc.). The functions then will use the affine transformations defined by the iterated function
system (IFS) below using n iterations to generate a figure of a fern fractal. The output of the
function will be the value from the toc command. Each affine transformation Tk (k = 1, 2, 3, 4)
involves six parameters a, b, c, d, e, f :

Tk(x) = Mkx + vk =

[
a b
c d

]
x +

[
e
f

]
where each transformation has probability pk of being performed. The IFS for the fern we will
be drawing is:

T a b c d e f p

1 0 0 0 4
25 0 0 1

100

2 17
20

1
25 − 1

25
17
20 0 8

5
17
20

3 1
5 −13

50
23
100

11
50 0 8

5
7

100

4 − 3
20

7
25

13
50

6
25 0 11

25
7

100

The three functions will use slightly different algorithms. The first one is a basic one in which
you may find the algorithm in a basic linear algebra text or even basic programming text.

(a) For fern1Ober.m, here is the algorithm:

i. Use the command tic

ii. Use the load('fernIFSs18.mat') that you’ve copied from the H-drive to load the
above data with the matrices, vectors, and probabilities that are used to do the fol-
lowing tasks.

iii. Let x =

[
0
0

]
.

iv. If n is the only input, plot the point x as a point using “*” marker. Otherwise, plot
the point with the additional inputs using varargin.

v. Use the random number generator rand to select one of the affine transformations Tk
according to the given probabilities.

vi. Redefine x to be the new x = Tk(x) = Mkx + vk.

vii. Plot the new point x as you did with the original x.

viii. Repeat steps (vi) through (viii) so a total of n new points are plotted (where should the
hold on and hold off commands be? How many times should your loop iterate?).

ix. The last command of the function should be storing toc into your output variable to
capture the time it took to generate and plot the fern fractal.

Page 4 of ??



MA 302 Assignment #5 Spring 18

Have a link to fern1Ober.m at this point on the webpage.

(b) For fern2Ober.m, we will adjust the process of fern1Ober.m by vectorizing the code.

i. Use the command tic

ii. Use the load('fernIFSs18.mat') that you’ve copied from the H-drive to load the
above data with the matrices, vectors, and probabilities that are used to do the fol-
lowing tasks.

iii. Let x =

[
0
0

]
and let X = x.

iv. Use the random number generator rand to select one of the affine transformations Tk
according to the given probabilities.

v. Redefine x = Tk(x) = Mkx + vk. Concatenate X with the new x. On subsequent
iterations concatenate the matrix X with the new vector x (add another column to
X that is the new x).

vi. Repeat steps (v) through (vi) so a total of n new points are in the matrix x

vii. If n is the only input, plot the points in the matrix X as a point using “*” marker.
Otherwise, plot the points with the additional inputs using varargin. (Note that the
first row of X contains the x-coordinates, second row contains the y-coordinates.)

viii. The last command of the function should be storing toc into your output variable to
capture the time it took to generate and plot the fern fractal.

Have a link to fern2Ober.m at this point on the webpage.

(c) For fern3Ober.m, we will adjust the process of fern2Ober.m by preallocating.

i. Use the command tic

ii. Use the load('fernIFSs18.mat') that you’ve copied from the H-drive to load the
above data and then pull the appropriate entries to define the matrices, vectors, and
probabilities that are usable to do the following tasks.

iii. Define x as a matrix with 2 rows and n+ 1 columns of zeros.

iv. For columns 2 through n + 1 of x, use the random number generator rand to select
one of the affine transformations Tk according to the given probabilities and let that
column of x equal Tk(previous column of x).

v. If n is the only input, plot the points in the matrix X as a point using “*” marker.
Otherwise, plot the points with the additional inputs using varargin. (Note that the
first row of X contains the x-coordinates, second row contains the y-coordinates.)

vi. The last command of the function should be storing toc into your output variable to
capture the time it took to generate and plot the fern fractal.

Have a link to fern3Ober.m at this point on the webpage.

5. Display the fern using fern1Ober, fern2Ober, and fern3Ober with n = 2000. Before each fern
command, use the command clf, and after each fern command, use the commands axis equal

and axis off. For each of the ferns, use the sprintf command to create titles that say which
fern function, the value of n, and how much time elapsed to create the fern fractal.

6. Display the fern using fern1Ober, fern2Ober, and fern3Ober with n = 5000, and specify the
square marker, color Loyola Green, and have the marker size be smaller than the default. Before
each fern command, use the command clf, and after each fern command, use the commands
axis equal and axis off. For each of the ferns, use the sprintf command to create titles
that say which fern function, the value of n, and how much time elapsed to create the fern
fractal.

Page 5 of ??



MA 302 Assignment #5 Spring 18

7. Display the fern using fern2Ober and fern3Ober with n = 50,000 and specify a marker and
a color of your choice (do not use the default color). Use other specifiers if you want. Before
each fern command, use the command clf, and after each fern command, use the commands
axis equal and axis off. For each of the ferns, use the sprintf command to create titles
that say which fern function, the value of n, and how much time elapsed to create the fern
fractal.

Page 6 of ??


