Due in 2 weeks!

Instructions: Create script or function files as directed. To turn in:

- Your answers to $\# 2$ with the score sheet stapled on top
- Copies of the plots (saved as JPG files and emailed).

Save each plot as hw4_1.jpg, hw4_2c.jpg, etc.
Also, title each plot of the form "Assignment 4, \#1", etc.

- your m-files, both function and script files (emailed)

The JPG and .m files should be emailed with MATLAB HW4 as the subject line.

1. Piecewise Functions

Consider the function:

$$
f(x)= \begin{cases}4 e^{x+2} & -6 \leq x<0 \\ x^{2} & 0 \leq x \leq \pi \\ \cos x & \pi<x \leq 6\end{cases}
$$

(a) Write a function called hw4_1a.m that computes $f(x)$ for an input. Make sure that x can be a number, vector or matrix and the computations are done component-wise. If an input outside of the domain in input, an appropriate error should be given.
(b) Write a script file, called hw4_1b.m to plot the function using the function above.

2. Taylor Polynomials

(a) Write a function named taylorexp.m that takes as input a natural number n (check it!) and a number, or vector x (check it!). If P_{n} is the n-th Taylor Polynomial for e^{x} at $a=0$, (otherwise known as the Maclaurin Polynomial for e^{x}), the function should return the computed value(s) $P_{n}(x)$.
(b) Use your above function to estimate e using $n=2,5$ and 10 . Write down the answers (interpret the MATLAB output appropriately). (no script file needed)
(c) Plot $y=e^{x}, P_{2}, P_{5}$ and P_{10} on the same graph for $x \in[-5,5]$. Make sure that you make a difference between the curves and label them appropriately. Limit the values on the y-axis to between 0 and 10. The script file to create this graph should be called hw4_2c.m
(d) Make another plot of the same curves but for $x \in[-1.5,1.5]$ and name the script file for this hw4_2d.m
(e) Based on the graphs, what can you say about what happens to P_{n} as n gets larger (in relation to $f(x)=e^{x}$?
(f) Based on the graphs, what would you need to do to use your function to estimate e^{x} accurately for x far away from 0 ?

