Due in two weeks!

The first problem is writing a function to do a specific task/calculation(s), while the second problem then uses your function to answer questions for an application.

1. Write an m-file, called newton.m, that uses Newton's Method to find an approximate solution to the equation $f(x)=0$, for a given function f. Your input should be:

- the function f,
- its derivative $\frac{d f}{d x}$,
- an initial guess x_{1} for the solution,
- the desired accuracy,
- and the maximum number of iterations allowed (so it will stop if accuracy cannot be reached).

Note: the user must input the function and derivative, MATLAB should not be used to find the derivative of f. The output should be the approximation to the solution of $f(x)=0$. Your code should iterate until the absolute value of the difference between the last two iterations is less than the desired tolerance/accuracy OR the maximum number of iterations has been reached - in either case, an appropriate message should be printed on the screen (use either disp or fprintf - experiment with this). The output of your function is the LAST iterate. Test your function for correctness by choosing to solve an equation of your choice (with a known solution).
2. A car dealer sells a new car for $\$ 23,275$. She also offers to sell the same car for payments of $\$ 475$ per month for five years. What monthly interest rate is this dealer charging?
To solve this problem, you will need to use the formula for the present value A of an annuity consisting of n equal payments of size R with an interest rate x per time period:

$$
A=\frac{R}{x}\left[1-(1+x)^{-n}\right] .
$$

(a) For the above situation, get a polynomial of x (simplified as much as possible) that is set to 0 that we would need to solve to find the interest rate x.
(b) Graph the polynomial to find an interval that contains a positive root and a good initial guess for the interest rate. (Make a clear, good graph - maybe with grid on).
(c) Use Newton's method and the initial guess from part (b) to solve the equation to find the monthly interest rate.
(d) What is the yearly interest rate (compounded monthly)? Hint: Think of a loan with principle P and interest rate x which is compounded monthly (and x is the monthly interest rate). After one year, we'd be looking at the amount: $P(1+x)^{(12)}$. But if we were looking at a yearly interest rate being r, we'd be looking at the amount being: $P(1+r)$. After one year, these quantities should be equal for the same principle P. So take these, form an equation and from your x in part c, solve for r.

To turn in:

- your m-files (e-mailed). One is your newton.m, one is a script file testing your function, and script files for $\# 2 \mathrm{~b}$, c . These files should be named newton.m, hw6_1.m, hw6_2b.m,hw6_2c.m
- Answers to $\# 2 a c d$ (on paper). Note: each part of $\# 2$ needs an answer except part (b), which needs a graph. Work should be shown for your answers to \#2a, \#2d.
- The graph for $\# 2$ b, saved as JPG and emailed. This graph should be appropriately titled and such.

