The exam will cover Chapters 12 and 13 of the text. There will be some straight forward computational problems like in the Webwork or text exercises. There will also be a few true/false questions. Other problems will involve more thought, but use the concepts we've discussed. Here is a sample of such problems that have been given in the past.

1. Let $\mathbf{a}=(x+y) \mathbf{i}+2 \mathbf{j}+y \mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}+(4 x+y+1) \mathbf{j}+4 \mathbf{k}$. Find the relationship between x and y such that \mathbf{a} and \mathbf{b} are orthogonal.
2. Find a vector function that represents the curve of intersection of the paraboloid $z=3 x^{2}+y^{2}$ and the parabolic cylinder $y=x^{2}$.
3. Show that the line given by $x=t, y=3 t-2, z=-t$ intersects the plane $x+y+z=1$ and find the point of intersection.
4. Sketch the portion of the plane $x+y+z=1$ that lies in the first octant.
5. Suppose that \mathbf{a}, \mathbf{b} and \mathbf{c} are three distinct unit vectors in \mathbb{R}^{3} which satify the following two conditions: $\mathbf{b} \times \mathbf{c} \neq \mathbf{0}$ and $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{0}$. Show that \mathbf{a} is perpendicular to both \mathbf{b} and \mathbf{c}. (Hint: use the formula for $\|\mathbf{u} \times \mathbf{v}\|$.)
6. Find the angle θ between the planes $x+y+z=1$ and $x-2 y+3 z=1$.
7. Find the symmetric equation for the line of intersection between the two planes $x+y+z=1$ and $x-2 y+3 z=1$.
8. Let $\mathbf{r}(t)=\sin (2 t) \mathbf{i}+3 t \mathbf{j}+\cos (2 t) \mathbf{k}$ where $-\pi \leq t \leq \pi$. Find $\mathbf{r}^{\prime}(t), \mathbf{r}^{\prime \prime}(t), \mathbf{T}(0)$ and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$.
9. Let $y=x^{2}$ be a parabola in the $x y$-plane parametrized by $\mathbf{r}(t)=<t, t^{2}, 0>$. Find the unit tangent vector at the origin.
10. Determine whether the following curves are smooth.
(a) $\mathbf{r}(t)=<t^{3}, t^{4}, t^{5}>$
(b) $\mathbf{r}(t)=<t^{3}+t, t^{4}, t^{5}>$
11. Evaluate the integrals.
(a) $\int_{0}^{1}\left(\frac{4}{1+t^{2}} \mathbf{j}+\frac{2 t}{1+t^{2}} \mathbf{k}\right) d t$
(b) $\int((\cos \pi t) \mathbf{i}+(\sin \pi t) \mathbf{j}+t \mathbf{k}) d t$
(c) $\int_{1}^{4}\left(\sqrt{t} \mathbf{i}+t e^{-t} \mathbf{j}+\frac{1}{t^{2}} \mathbf{k}\right) d t$
12. A particle moves along a curve defined by

$$
\mathbf{r}(t)=<2 \cos (2 t), 2 \sin (2 t), 3 t>
$$

(a) Reparametrize the curve in terms of arc length s.
(b) Find a unit tangent vector to the curve in terms of s.
(c) Show that the curve has constant curvature.
13. For the curve given by $\mathbf{r}(t)=\left\langle\frac{1}{3} t^{3}, \frac{1}{2} t^{2}, t\right\rangle$, find $\mathbf{T}(t)$.
14. For the curve given by $\mathbf{r}(t)=\left\langle\cos t^{2}, 7, \sin t^{2}\right\rangle$ with $t \geq 0$, find
(a) $\mathbf{T}(t)$,
(b) $\mathbf{N}(t)$,
(c) $\mathbf{B}(t)$
15. Let $\mathbf{r}(t)=\sin (2 t) \mathbf{i}+3 t \mathbf{j}+\cos (2 t) \mathbf{k}$ where $-\pi \leq t \leq \pi$ be the position vector of a particle at time t.
(a) Show that the velocity and acceleration vectors are always perpendicular.
(b) Is there a time t when the position and velocity vectors are perpendicular? If so, find all such time(s) t and the corresponding position(s) of the particle.
16. Let $y=x^{2}$ be a parabola in the $x y$-plane parametrized by $\mathbf{r}(t)=<t, t^{2}, 0>$. Find the unit tangent vector, the unit normal vector and the binormal vector at the origin.
17. Let C be the circle of radius 3 centered at the origin in the $x y$-plane.
(a) Find a parametrization for C in the form $x=f(t), y=g(t)$ for t in some interval and use it to obtain the position vector $\mathbf{r}(t)$ for C.
(b) Give the arc length parametrization $\mathbf{r}(s)$ of this curve, starting at the point $(3,0)$.
(c) Find the curvature κ of C.
18. A moving particle starts at an initial position $\mathbf{r}(0)=(4,2,0)$ with initial velocity $\mathbf{v}(0)=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$. Its acceleration is $\mathbf{a}(t)=e^{2 t} \mathbf{j}-20 \mathbf{k}$.
(a) Find the velocity vector $\mathbf{v}(t)$ for the particle.
(b) Find the position vector $\mathbf{r}(t)$ for the particle.

