THERE MAY BE TYPOS in these solutions. Please let me know if you find any.

1. Let $\mathbf{a}=(x+y) \mathbf{i}+2 \mathbf{j}+y \mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}+(4 x+y+1) \mathbf{j}+4 \mathbf{k}$. Find the relationship between x and y such that \mathbf{a} and \mathbf{b} are orthogonal.

$$
\begin{aligned}
& \mathbf{a} \text { and } \mathbf{b} \text { are orthogonal } \Longleftrightarrow \mathbf{a} \cdot \mathbf{b}=0 \\
& \begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =3(x+y)+2(4 x+y+1)+4 y=0 \\
& \Longrightarrow 3 x+3 y+8 x+2 y+2+4 y=0 \\
& \Longrightarrow 11 x+9 y=-2
\end{aligned}
\end{aligned}
$$

$$
11 x+9 y=-2 \text { (or some equivalent equation for this line) }
$$

2. Find a vector function that represents the curve of intersection of the paraboloid $z=3 x^{2}+y^{2}$ and the parabolic cylinder $y=x^{2}$.

$$
C_{1}: z=3 x^{2}+y^{2}, \quad C_{2}: y=x^{2}
$$

By plugging in the equation for C_{2} into C_{1}, we get

$$
z=3 y+y^{2}
$$

So if we let $x=t$ for $t \in \mathbb{R}$, then $y=t^{2}$ and $z=3 t^{2}+t^{4}$ to get

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\left(3 t^{2}+t^{4}\right) \mathbf{k}=\left\langle t, t^{2}, 3 t^{2}+t^{4}\right\rangle
$$

3. Show that the line given by $x=t, y=3 t-2, z=-t$ intersects the plane $x+y+z=1$ and find the point of intersection.
Plug in the parametric equations for the line into the equation of the plane to get:

$$
x+y+z=t+3 t-2-t=1 \Longrightarrow 3 t-2=1 \Longrightarrow t=1
$$

So the line intersects the plane when $t=1$, or more specifically, at the point $x=1, y=1$ and $z=-1$

$$
\text { Point of intersection: }(1,1,-1)
$$

4. Sketch the portion of the plane $x+y+z=1$ that lies in the first octant.

To sketch, try and find intercepts.

$$
\begin{aligned}
& x \text {-int: when } y=z=0 \Longrightarrow x=1 \Longrightarrow(1,0,0) \\
& y \text {-int: when } x=z=0 \Longrightarrow y=1 \Longrightarrow(0,1,0) \\
& z \text {-int: when } x=y=0 \Longrightarrow z=1 \Longrightarrow(0,0,1)
\end{aligned}
$$

Since 3 points determine a plane, can use these points to draw the sketch (sketch not shown)
5. TYPO IN HINT FIXED. Suppose that \mathbf{a}, \mathbf{b} and \mathbf{c} are three distinct unit vectors in \mathbb{R}^{3} which satify the following two conditions: $\mathbf{b} \times \mathbf{c} \neq \mathbf{0}$ and $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{0}$. Show that \mathbf{a} is perpendicular to both \mathbf{b} and \mathbf{c}. (Hint: use the formula for $\|\mathbf{u} \times \mathbf{v}\|$.)

$$
\mathbf{b} \times \mathbf{c} \neq \mathbf{0} \Longrightarrow\|\mathbf{b} \times \mathbf{c}\|=\|\mathbf{b}\|\|\mathbf{c}\| \sin \theta_{1} \neq 0
$$

Since \mathbf{b} and \mathbf{c} are unit vectors, $\|\mathbf{b}\|=\|\mathbf{c}\|=1$ and thus $\|\mathbf{b} \times \mathbf{c}\|=\sin \theta_{1}$. Thus $\|\mathbf{b} \times \mathbf{c}\|=\sin \theta_{1} \neq 0$.

We are given that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{0}$. But $\|\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\|=\|\mathbf{a}\|\|\mathbf{b} \times \mathbf{c}\| \sin \theta_{2}$ and since $\|\mathbf{a}\|=1$, we get

$$
0=\|\mathbf{a} \times(\mathbf{b} \times \mathbf{c})\|=\sin \theta_{1} \sin \theta_{2}
$$

The only way for this to happen is for $\sin \theta_{2}=0$, in other words, θ_{2}, the angle between \mathbf{a} and $\mathbf{b} \times \mathbf{c}$ is 0 or π. So \mathbf{a} is parallel to $\mathbf{b} \times \mathbf{c}$. Thus \mathbf{a} is orthogonal to \mathbf{b} and \mathbf{c} since $\mathbf{b} \times \mathbf{c}$ is orthogonal to both \mathbf{b} and \mathbf{c}.
6. Find the angle θ between the planes $x+y+z=1$ and $x-2 y+3 z=1$.

Look at the normal vectors \mathbf{n}_{1} and \mathbf{n}_{2}.

$$
\begin{aligned}
\mathbf{n}_{1}=<1,1,1> & \mathbf{n}_{2}=<1,-2,3>\quad \mathbf{n}_{1} \cdot \mathbf{n}_{2}=\left\|\mathbf{n}_{1}\right\|\left\|\mathbf{n}_{2}\right\| \cos \theta \\
\Longrightarrow \cos \theta & =\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left\|\mathbf{n}_{1}\right\|\left\|\mathbf{n}_{2}\right\|}=\frac{1-2+3}{\sqrt{3} \cdot \sqrt{14}}=\frac{2}{\sqrt{42}} \\
\Longrightarrow \theta & =\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right) \text { (this is the exact value) } \\
& \approx 1.257 \text { radians or } 72^{\circ}
\end{aligned}
$$

7. Find the symmetric equation for the line of intersection between the two planes $x+y+z=1$ and $x-2 y+3 z=1$.

Try setting $z=0$ into both plane equations:

$$
\begin{array}{r}
P_{1}: x+y=1 \\
P_{2}: x-2 y=1
\end{array}
$$

So a point on the line is $(1,0,0)$ Now we need the direction vector for the line. The normal vectors \mathbf{n}_{1} and \mathbf{n}_{2} are perpendicular to vectors and lines in planes P_{1} and P_{2}, respectively. Thus the normal vectors for both planes are perpendicular to the line of intersection; i.e., the line is orthogonal to both normal vectors. Thus, the we can use $\mathbf{n}_{1} \times \mathbf{n}_{2}$ as the direction vector for the line.

$$
\begin{aligned}
\mathbf{n}_{1} \times \mathbf{n}_{2} & =<1,1,1>\times<1,-2,3> \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
1 & -2 & 3
\end{array}\right| \\
= & \mathbf{i}(3-(-2))-\mathbf{j}(3-1)+\mathbf{k}(-2-1)=5 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k} \\
& \frac{x-1}{5}=\frac{y}{-2}=\frac{z}{-3}
\end{aligned}
$$

8. Let $\mathbf{r}(t)=\sin (2 t) \mathbf{i}+3 t \mathbf{j}+\cos (2 t) \mathbf{k}$ where $-\pi \leq t \leq \pi$. Find $\mathbf{r}^{\prime}(t), \mathbf{r}^{\prime \prime}(t), \mathbf{T}(0)$ and $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =2 \cos (2 t) \mathbf{i}+3 \mathbf{j}-2 \sin (2 t) \mathbf{k} \\
\mathbf{r}^{\prime \prime}(t) & =-4 \sin (2 t) \mathbf{i}+0 \mathbf{j}-4 \cos (2 t) \mathbf{k} \\
\mathbf{T}(0) & =\frac{\mathbf{r}^{\prime}(0)}{\left\|\mathbf{r}^{\prime}(0)\right\|}, \quad \mathbf{r}^{\prime}(0)=<2,3,0>, \quad\left\|\mathbf{r}^{\prime}(0)\right\|=\sqrt{13} \\
\mathbf{T}(0) & =\left\langle\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}, 0\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 \cos (2 t) & 3 & -2 \sin (2 t) \\
-4 \sin (2 t) & 0 & -4 \cos (2 t)
\end{array}\right| \\
& =\mathbf{i}(-12 \cos (2 t))-\mathbf{j}\left(-8 \cos ^{2}(2 t)-8 \sin ^{2}(2 t)\right)+\mathbf{k}(12 \sin (2 t)) \\
& =-12 \cos (2 t) \mathbf{i}+8 \mathbf{j}+12 \sin (2 t) \mathbf{k}
\end{aligned}
$$

$$
\mathbf{r}^{\prime}(t)=2 \cos (2 t) \mathbf{i}+3 \mathbf{j}-2 \sin (2 t) \mathbf{k} \quad \mathbf{r}^{\prime \prime}(t)=-4 \sin (2 t) \mathbf{i}+0 \mathbf{j}-4 \cos (2 t) \mathbf{k}
$$

$$
\mathbf{T}(0)=\left\langle\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}, 0\right\rangle \quad \mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=-12 \cos (2 t) \mathbf{i}+8 \mathbf{j}+12 \sin (2 t) \mathbf{k}
$$

9. Let $y=x^{2}$ be a parabola in the $x y$-plane parametrized by $\mathbf{r}(t)=<t, t^{2}, 0>$. Find the unit tangent vector at the origin.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =<1,2 t, 0> \\
\mathbf{r}^{\prime}(0) & =<1,0,0> \\
\left\|\mathbf{r}^{\prime}(0)\right\| & =1 \\
\mathbf{T}(0) & =<1,0,0>
\end{aligned}
$$

10. Determine whether the following curves are smooth.
(a) $\mathbf{r}(t)=<t^{3}, t^{4}, t^{5}>$

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =<3 t^{2}, 4 t^{3}, 5 t^{4}>\text { is continuous for any } t \\
& =\mathbf{0} \text { when } t=0
\end{aligned}
$$

$$
\mathbf{r}(t) \text { is not smooth }
$$

(b) $\mathbf{r}(t)=<t^{3}+t, t^{4}, t^{5}>$

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =<3 t^{2}+1,4 t^{3}, 5 t^{4}>\text { is continuous for any } t \\
& \neq \mathbf{0} \text { for any } t
\end{aligned}
$$

$$
\mathbf{r}(t) \text { is smooth }
$$

11. Evaluate the integrals.
(a) $\int_{0}^{1}\left(\frac{4}{1+t^{2}} \mathbf{j}+\frac{2 t}{1+t^{2}} \mathbf{k}\right) d t$

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{4}{1+t^{2}} \mathbf{j}+\frac{2 t}{1+t^{2}} \mathbf{k}\right) d t & =\left(\int_{0}^{1} \frac{4}{1+t^{2}} d t\right) \mathbf{j}+\left(\int_{0}^{1} \frac{2 t}{1+t^{2}} d t\right) \mathbf{k} \\
& =\left(\left.4 \tan ^{-1} t\right|_{0} ^{1}\right) \mathbf{j}+\left(\left.\ln \left(1+t^{2}\right)\right|_{0} ^{1}\right) \mathbf{k} \\
& =\pi \mathbf{j}+(\ln 2) \mathbf{k}
\end{aligned}
$$

(b) $\int((\cos \pi t) \mathbf{i}+(\sin \pi t) \mathbf{j}+t \mathbf{k}) d t$

$$
\begin{aligned}
\int((\cos \pi t) \mathbf{i}+(\sin \pi t) \mathbf{j}+t \mathbf{k}) d t & =\left(\int \cos \pi t d t\right) \mathbf{i}+\left(\int \sin \pi t d t\right) \mathbf{j}+\left(\int t d t\right) \mathbf{k} \\
& =\left\langle\frac{1}{\pi} \sin \pi t,-\frac{1}{\pi} \cos \pi t, \frac{1}{2} t^{2}\right\rangle
\end{aligned}
$$

(c) $\int_{1}^{4}\left(\sqrt{t} \mathbf{i}+t e^{-t} \mathbf{j}+\frac{1}{t^{2}} \mathbf{k}\right) d t$

$$
\begin{aligned}
\int_{1}^{4}\left(\sqrt{t} \mathbf{i}+t e^{-t} \mathbf{j}+\frac{1}{t^{2}} \mathbf{k}\right) d t & =\left(\int_{1}^{4} t^{1 / 2} d t\right) \mathbf{i}+\left(\int_{1}^{4} t e^{-t} d t\right) \mathbf{j}+\left(\int_{1}^{4} t^{-2} d t\right) \mathbf{k} \\
& =\left(\left.\frac{2}{3} t^{3 / 2}\right|_{1} ^{4}\right) \mathbf{i}+\left(-\left.t e^{-t}\right|_{1} ^{4}+\int_{1}^{4} e^{-t} d t\right) \mathbf{j}+\left(-\left.t^{-1}\right|_{1} ^{4}\right) \mathbf{k} \\
& =\left(\frac{16}{3}-\frac{2}{3}\right) \mathbf{i}+\left(-4 e^{-4}+e^{-1}-\left(\left.e^{-t}\right|_{1} ^{4}\right)\right) \mathbf{j}+\left(-\frac{1}{4}+1\right) \mathbf{k} \\
& =\frac{14}{3} \mathbf{i}+\left(-5 e^{-4}+2 e^{-1}\right) \mathbf{j}+\frac{3}{4} \mathbf{k}
\end{aligned}
$$

12. A particle moves along a curve defined by

$$
\mathbf{r}(t)=<2 \cos (2 t), 2 \sin (2 t), 3 t>
$$

(a) Reparametrize the curve in terms of arc length s.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =<-4 \sin (2 t), 4 \cos (2 t), 3> \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{16 \sin ^{2}(2 t)+16 \cos ^{2}(2 t)+9} \\
& =\sqrt{16+9}=5 \\
s & =\int_{0}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u=\int_{0}^{t} 5 d u=5 t \\
s & =5 t \Longrightarrow t=\frac{s}{5} \\
\therefore \mathbf{r}(t(s)) & =\mathbf{r}(s)=\left\langle 2 \cos \left(\frac{2 s}{5}\right), 2 \sin \left(\frac{2 s}{5}\right), \frac{3 s}{5}\right\rangle
\end{aligned}
$$

(b) Find a unit tangent vector to the curve in terms of s.

$$
\begin{aligned}
\mathbf{r}^{\prime}(s) & =\left\langle-\frac{4}{5} \sin \left(\frac{2 s}{5}\right), \frac{4}{5} \cos \left(\frac{2 s}{5}\right), \frac{3}{5}\right\rangle \\
\left\|\mathbf{r}^{\prime}(s)\right\| & =\sqrt{\frac{16}{25} \sin ^{2}\left(\frac{2 s}{5}\right)+\frac{16}{25} \cos ^{2}\left(\frac{2 s}{5}\right)+\frac{9}{25}} \\
& =\sqrt{\frac{16}{25}+\frac{9}{25}}=1 \\
\mathbf{T}(s) & =\frac{\mathbf{r}^{\prime}(s)}{\left\|\mathbf{r}^{\prime}(s)\right\|}=\left\langle-\frac{4}{5} \sin \left(\frac{2 s}{5}\right), \frac{4}{5} \cos \left(\frac{2 s}{5}\right), \frac{3}{5}\right\rangle
\end{aligned}
$$

(c) Show that the curve has constant curvature.

$$
\begin{aligned}
\kappa & =\left\|\mathbf{T}^{\prime}(s)\right\|(\text { using the defn, not our usual formula) } \\
\mathbf{T}^{\prime}(s) & =\left\langle-\frac{8}{25} \cos (2 s / 5),-\frac{8}{25} \sin (2 s / 5), 0\right\rangle \\
\kappa=\left\|\mathbf{T}^{\prime}(s)\right\| & =\sqrt{\frac{64}{625} \cos ^{2}(2 s / 5)+\frac{64}{625} \sin ^{2}(2 s / 5)} \\
& =\sqrt{\frac{64}{625}}=\frac{8}{25} \text { no matter what } s \text { is so curvature is constant }
\end{aligned}
$$

13. For the curve given by $\mathbf{r}(t)=\left\langle\frac{1}{3} t^{3}, \frac{1}{2} t^{2}, t\right\rangle$, find $\mathbf{T}(t)$.

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=\left\langle t^{2}, t, 1\right\rangle, \quad\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{t^{4}+t^{2}+1} \\
& \mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{1}{\sqrt{t^{4}+t^{2}+1}}\left\langle t^{2}, t, 1\right\rangle
\end{aligned}
$$

14. For the curve given by $\mathbf{r}(t)=\left\langle\cos t^{2}, 7, \sin t^{2}\right\rangle$ with $t \geq 0$, find
(a) $\mathbf{T}(t)$,

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =<-2 t \sin t^{2}, 0,2 t \cos t^{2}> \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{4 t^{2} \sin ^{2} t^{2}+4 t^{2} \cos ^{2} t^{2}}=2 t(\text { since } t \geq 0) \\
\mathbf{T}(t) & =\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=<-\sin t^{2}, 0, \cos t^{2}>
\end{aligned}
$$

(b) $\mathbf{N}(t)$,

$$
\begin{aligned}
\mathbf{T}^{\prime}(t) & =<-2 t \cos t^{2}, 0,-2 t \sin t^{2}> \\
\left\|\mathbf{T}^{\prime}(t)\right\| & =\sqrt{4 t^{2} \cos ^{2} t^{2}+4 t^{2} \sin ^{2} t^{2}}=2 t \\
\mathbf{N}(t) & =\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}=<-\cos t^{2}, 0,-\sin t^{2}>
\end{aligned}
$$

(c) $\mathbf{B}(t)$

$$
\begin{aligned}
\mathbf{B}(t) & =\mathbf{T} \times \mathbf{N} \\
& =\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin t^{2} & 0 & \cos t^{2} \\
-\cos t^{2} & 0 & -\sin t^{2}
\end{array}\right] \\
& =\mathbf{i}(0)-\mathbf{j}\left(\sin ^{2} t^{2}+\cos ^{2} t^{2}\right)+\mathbf{k}(0)=\langle 0,-1,0\rangle
\end{aligned}
$$

15. Let $\mathbf{r}(t)=\sin (2 t) \mathbf{i}+3 t \mathbf{j}+\cos (2 t) \mathbf{k}$ where $-\pi \leq t \leq \pi$ be the position vector of a particle at time t.
(a) Show that the velocity and acceleration vectors are always perpendicular.

$$
\begin{aligned}
& \mathbf{v}(t)=\mathbf{r}^{\prime}(t) \\
& \mathbf{a}(t)=<2 \cos (2 t), 3,-2 \sin (2 t)> \\
& \mathbf{v}(t) \cdot \mathbf{v}(t)=-8 \sin (2 t), 0,-4 \cos (2 t)> \\
& \mathbf{a}(2 t) \cos (2 t)+8 \cos (2 t) \sin (2 t)=0
\end{aligned}
$$

Since the dot product of the velocity and acceleration vectors is always 0 , they are always perpendicular.
(b) Is there a time t when the position and velocity vectors are perpendicular? If so, find all such time(s) t and the corresponding position(s) of the particle.

$$
\begin{aligned}
\mathbf{r}(t) \cdot \mathbf{v}(t) & =2 \sin (2 t) \cos (2 t)+9 t-2 \cos (2 t) \sin (2 t) \\
& =9 t=0 \Longleftrightarrow t=0 \\
\mathbf{r}(0) & =<\sin (0), 0, \cos (0)>=<0,0,1>
\end{aligned}
$$

They are perpendicular only when $t=0$. The position of the particle at this time is $\langle 0,0,1\rangle$.
16. Let $y=x^{2}$ be a parabola in the $x y$-plane parametrized by $\mathbf{r}(t)=<t, t^{2}, 0>$. Find the unit tangent vector, the unit normal vector and the binormal vector at the origin.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =<1,2 t, 0>\quad\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{1+4 t^{2}}, \quad \mathbf{T}(t)=\left\langle\frac{1}{\sqrt{1+4 t^{2}}}, \frac{2 t}{\sqrt{1+4 t^{2}}}, 0\right\rangle \\
<0,0,0> & \Longleftrightarrow t=0, \text { so } \mathbf{T}(0)=<1,0,0> \\
\mathbf{T}^{\prime}(t) & =\left\langle-\frac{1}{2}\left(1+4 t^{2}\right)^{-3 / 2}(8 t), \frac{2\left(1+4 t^{2}\right)^{1 / 2}-2 t \frac{1}{2}\left(1+4 t^{2}\right)^{-1 / 2}(8 t)}{1+4 t^{2}}, 0\right\rangle \\
& =\left\langle\frac{-4 t}{\left(1+4 t^{2}\right)^{3 / 2}}, \frac{2\left(1+4 t^{2}\right)^{1 / 2}-\frac{8 t^{2}}{\left(1+4 t^{2}\right)^{1 / 2}}}{1+4 t^{2}}, 0\right\rangle=\left\langle\frac{-4 t}{\left(1+4 t^{2}\right)^{3 / 2}}, \frac{2\left(1+4 t^{2}\right)-8 t^{2}}{\left(1+4 t^{2}\right)^{3 / 2}}, 0\right\rangle \\
& =\left\langle\frac{-4 t}{\left(1+4 t^{2}\right)^{3 / 2}}, \frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}, 0\right\rangle \Longrightarrow \mathbf{T}^{\prime}(0)=<0,2,0>, \quad\left\|\mathbf{T}^{\prime}(0)\right\|=\sqrt{0+4+0}=2 \\
\mathbf{N}(0) & \left.=\frac{\mathbf{T}^{\prime}(0)}{\left\|\mathbf{T}^{\prime}(0)\right\|} \Longrightarrow \right\rvert\, \mathbf{N}(0)=<0,1,0> \\
\mathbf{B}(0) & =\mathbf{T}(0) \times \mathbf{N}(0)=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|=0 \mathbf{i}-0 \mathbf{j}+1 \mathbf{k}=\mathbf{k} \Longrightarrow \mathbf{B}(0)=<0,0,1>
\end{aligned}
$$

17. Let C be the circle of radius 3 centered at the origin in the $x y$-plane.
(a) Find a parametrization for C in the form $x=f(t), y=g(t)$ for t in some interval and use it to obtain the position vector $\mathbf{r}(t)$ for C.

$$
\begin{gathered}
x^{2}+y^{2}=3^{2} \quad \Longrightarrow x=3 \cos t, y=3 \sin t, t \in[0,2 \pi] \\
\mathbf{r}(t)=<3 \cos t, 3 \sin t>
\end{gathered}
$$

(b) Give the arc length parametrization $\mathbf{r}(s)$ of this curve, starting at the point $(3,0)$.

$$
\begin{aligned}
(3,0) & \Longrightarrow t=0 \\
\mathbf{r}^{\prime}(t) & =<-3 \sin t, 3 \cos t> \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{9 \sin ^{2} t+9 \cos ^{2} t}=3 \\
s & =\int_{0}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u=\int_{0}^{t} 3 d u=3 t \\
t & =s / 3 \\
\mathbf{r}(s) & =<3 \cos (s / 3), 3 \sin (s / 3)>
\end{aligned}
$$

(c) Find the curvature κ of C.

$$
\begin{aligned}
\kappa & =\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|} \\
\mathbf{T}(t) & =\frac{1}{3}<-3 \sin t, 3 \cos t> \\
& =<-\sin t, \cos t> \\
\mathbf{T}^{\prime}(t) & =<-\cos t,-\sin t> \\
\left\|\mathbf{T}^{\prime}(t)\right\| & =\sqrt{\cos ^{2} t+\sin ^{2} t}=1 \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =3 \\
\Longrightarrow \kappa & =\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{OR} & =\left\|\mathbf{T}^{\prime}(s)\right\| \\
\mathbf{r}^{\prime}(s) & =<-\sin (s / 3), \cos (s / 3)> \\
\left\|\mathbf{r}^{\prime}(s)\right\| & =\sqrt{\sin ^{2}(s / 3)+\cos ^{2}(s / 3)}=1 \\
\mathbf{T}(s) & =<-\sin (s / 3), \cos (s / 3)> \\
\mathbf{T}^{\prime}(s) & =\left\langle-\frac{1}{3} \cos (s / 3),-\frac{1}{3} \sin (s / 3)\right\rangle \\
\Longrightarrow \kappa & =\sqrt{\frac{1}{9} \cos ^{2}(s / 3)+\frac{1}{9} \sin ^{2}(s / 3)} \\
& =\sqrt{\frac{1}{9}}=\frac{1}{3}
\end{aligned}
$$

18. A moving particle starts at an initial position $\mathbf{r}(0)=(4,2,0)$ with initial velocity $\mathbf{v}(0)=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$. Its acceleration is $\mathbf{a}(t)=e^{2 t} \mathbf{j}-20 \mathbf{k}$.
(a) Find the velocity vector $\mathbf{v}(t)$ for the particle.

$$
\begin{aligned}
\mathbf{v}(t) & =\int \mathbf{a}(t) d t+\mathbf{C}, \quad \mathbf{C}=<c_{1}, c_{2}, c_{3}> \\
& =\left\langle 0, \frac{1}{2} e^{2 t},-20 t\right\rangle+<c_{1}, c_{2}, c_{3}> \\
\mathbf{v}(0) & =<2,3,-1>=\left\langle c_{1}, \frac{1}{2}+c_{2}, c_{3}\right\rangle \Longrightarrow c_{1}=2 \quad c_{2}=\frac{5}{2}, \quad c_{3}=-1 \\
\mathbf{v}(t) & =\left\langle 2, \frac{e^{2 t}}{2}+\frac{5}{2},-20 t-1\right\rangle
\end{aligned}
$$

(b) Find the position vector $\mathbf{r}(t)$ for the particle.

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{v}(t) d t+\mathbf{D}, \quad \mathbf{D}=<d_{1}, d_{2}, d_{3}> \\
\mathbf{r}(t) & =\left\langle 2 t+d_{1}, \frac{e^{2 t}}{4}+\frac{5}{2} t+d_{2},-10 t^{2}-t+d_{3}\right\rangle \\
\mathbf{r}(0) & =<4,2,0\rangle=\left\langle d_{1}, \frac{1}{4}+d_{2}, d_{3}\right\rangle \Longrightarrow d_{1}=4 \quad d_{2}+\frac{7}{4} \quad d_{3}=0 \\
\mathbf{r}(t) & =\left\langle 2 t+4, \frac{e^{2 t}}{4}+\frac{5}{2} t+\frac{7}{4},-10 t^{2}-t\right\rangle
\end{aligned}
$$

