1

The exam is on Thursday, October 30 and will cover Chapter 14. Here is a sample of problems that have been given in the past. All problems will be computational in nature like your webwork, homework exercises or the problems below; there will be no true/false questions on this exam.

1. Consider the function

$$f(x,y) = \sqrt{y-x}.$$

- (a) Sketch the domain of f.
- (b) Sketch the level curves f(x, y) = k for k = 0, 1, 2, 3.
- (c) Find f_x .
- (d) Find f_y .
- (e) Find the equation of the tangent plane to f at the point (2, 6, 2).

2. Show that
$$\lim_{(x,y)\to(0,0)} \frac{3xy}{x^2+y^2}$$
 doesn't exist.

3. Given $u(t,x) = e^{-\alpha^2 k^2 t} \sin(kx)$, evaluate $\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2}$, simplifying as much as possible.

4. Given $x - z = \arctan(yz)$, find

(a)
$$\frac{\partial z}{\partial x}$$
 (b) $\frac{\partial z}{\partial y}$

5. Consider the surface given implicitly by xy + yz + xz = 7. Find

(a)
$$\frac{\partial z}{\partial x}$$
 (b) $\frac{\partial z}{\partial y}$

6. Suppose u = xy + yz + xz, x = st, $y = e^{st}$ and $z = t^2$.

- (a) Find \$\frac{\partial u}{\partial s}\$ at the point \$(s,t) = (0,1)\$.
 (b) Find \$\frac{\partial u}{\partial t}\$ at the point \$(s,t) = (0,1)\$.
- 7. Suppose $z = 2xy + 3y^2 + ye^x$, $x = r\cos\theta$ and $y = r\sin\theta$.
 - (a) Find ^{∂z}/_{∂r} at the point (r, θ) = (2, π).
 (b) Find ^{∂z}/_{∂θ} at the point (r, θ) = (2, π).
- 8. Verify that the function $f(x,y) = \ln \sqrt{x^2 + y^2}$ is a solution to Laplace's equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

9. Calculate the limits, or show that they don't exist.

(a)
$$\lim_{(x,y,z)\to(4,1,-2)} e^{x^2 z} \cos(2y+z)$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{5x^4 y^2}{x^8+y^8}$$

10. Find all second partial derivatives of $f(x, y) = \ln(3x + 5y)$.

Exam #2 Review

- 11. Find the linear approximation of $f(x, y) = \ln(x 3y)$ at (7,2) and use it to approximate f(6.9, 2.06).
- 12. The pressure, volume and temperature of a mole of an ideal gas are related by the equation PV = 8.31T, where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K.
- 13. Consider the function $f(x, y) = 3x^2 xy + y^3$.
 - (a) Find the rate of change of f at (1, 2) in the direction of $\mathbf{u} = 3\mathbf{i} + 4\mathbf{j}$.
 - (b) From the point (1, 2), in what direction does f decrease the most? Give your answer as a unit vector. What is this maximum rate of decrease?
 - (c) From the point (1,2), in what direction does f increase the most? Give your answer as a unit vector. What is this maximum rate of increase?
 - (d) From the point (1,2), in what direction(s) is the rate of change of f equal to zero? Give your answer(s) as unit vector(s).
- 14. Suppose f(x, y) is a function such that $\nabla f(2, 4)$ has norm of 5. Is there a direction **u** such that the directional derivative $D_{\mathbf{u}}f(2, 4) = 7$? Explain your answer.
- 15. Consider the ellipsoid $x^2 + 4y^2 = 169 9z^2$ and the point P(3, 2, 4) on the ellipsoid.
 - (a) Find the equation of the tangent plane to the ellipsoid at the point P.
 - (b) Find the parametric equations for the normal line to the ellipsoid at the point P.

16. Let
$$f(x,y) = x^2 + \frac{y^2}{2} + x^2y$$
.

- (a) Find all critical points of f.
- (b) Apply the second derivative test to each of them, and write down the result of the test.
- 17. Consider the function $f(x, y) = y^2 x^2 + x^4$. Find and classify (as maxima, minima or saddles) the critical points of f, showing all work.
- 18. Find the maximum of f(x, y) = xy restricted to the curve $(x+1)^2 + y^2 = 1$. Give both the coordinates of the point and the value of f.
- 19. Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is a constant, C.
- 20. Find the absolute maximum and minimum of $f(x, y) = x^2 + xy + y^2$ over the disk $\{(x, y) | x^2 + y^2 \le 9\}$.