MA 351 Fall 2008

1. maximum is
$$\frac{3\sqrt{3}}{4}$$
 at $\left(-\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$
2. $\frac{C}{12} \times \frac{C}{12} \times \frac{C}{12}$
3. minimum is 0 at (0,0), maximum is $\frac{27}{2}$ at $\left(-\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right), \left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
4. 104
5. $\frac{144}{35}$
6. $\frac{1}{12}$
7. $\frac{13}{6}$
8. $\frac{16}{3}r^3$
9. $\frac{(e^{25} - e^{16})\pi}{4}$
10. 6π
11. $\frac{1}{4}e^{-1} = \frac{1}{4e}$

12.

$$\begin{aligned} \int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) \, dz \, dy \, dx &= \int_{0}^{1} \int_{\sqrt{y}}^{1} \int_{0}^{y} f(x, y, z) \, dz \, dx \, dy \\ &= \int_{0}^{1} \int_{0}^{y} \int_{\sqrt{y}}^{1} f(x, y, z) \, dx \, dz \, dy \\ &= \int_{0}^{1} \int_{z}^{1} \int_{\sqrt{y}}^{1} f(x, y, z) \, dx \, dy \, dz \\ &= \int_{0}^{1} \int_{0}^{x^{2}} \int_{z}^{x^{2}} f(x, y, z) \, dy \, dz \, dx \\ &= \int_{0}^{1} \int_{\sqrt{z}}^{1} \int_{z}^{x^{2}} f(x, y, z) \, dy \, dz \, dx \\ &= \int_{0}^{1} \int_{\sqrt{z}}^{1} \int_{z}^{x^{2}} f(x, y, z) \, dy \, dz \, dz \end{aligned}$$

$$13. -\frac{3}{10} \qquad 14. \frac{65\pi}{4} \qquad 15. \frac{\pi}{2}(5e^{3}-2)$$

16. Consider the two surfaces $\rho = 3 \csc \theta$ in spherical coordinates and r = 3 in cylindrical coordinates. Are they the same surface, or different? Explain your answer.

Several ways to do this, this is one: For the first surface, remember:

For the second surface, remember:

$x = \rho \cos \theta \sin \phi$	$x = r\cos\theta$
$y = \rho \sin \theta \sin \phi$	$y=r\sin\theta$
$z = \rho \cos \phi$	z = z

So if we let $\phi = 0$ in the first surface, we would get x = 0, and y = 0. For the second surface, when x = 0, that would mean $\cos \theta = 0$ since r = 3. Then on the second surface, by Pythagorean Identity, if $\cos \theta = 0$, then $\sin \theta = \pm 1$. Thus $y = \pm 3$ when x = 0. But on the first surface x = 0 and y = 0. Thus these cannot be the same surface.