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Note. In this document, we use the symbol ∼ symbol rather than ¬ as the negation symbol.
Thus ∼ p means “not p.”

There are four basic proof techniques to prove p =⇒ q, where p is the hypothesis (or set of
hypotheses) and q is the result.

1. Direct proof

2. Contrapositive

3. Contradiction

4. Mathematical Induction

What follows are some simple examples of proofs. You very likely saw these in MA395:
Discrete Methods.

1 Direct Proof

Direct proofs use the hypothesis (or hypotheses), definitions, and/or previously proven results
(theorems, etc.) to reach the result. For the following proof, we use the definition of an even
integer to prove the result.

Theorem 1.1. If m ∈ Z is even, then m2 is even.
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Proof: Suppose m ∈ Z is even. By the definition of an even integer, there exists n ∈ Z such
that

m = 2n.

Thus we get
m2 = (2n)2 = 4n2 = 2(2n2)

and we have m2 is also even.

The following is an example of a direct proof using cases. We use the definitions of divisible
and modulo.

Theorem 1.2. If q is not divisible by 3, then q2 ≡ 1 (mod 3).

Proof: For any integer q, either q ≡ 0 (mod 3), q ≡ 1 (mod 3), or
q ≡ 2 (mod 3). Since q is not divisible by 3, we know q 6≡ 0 (mod 3), so either q ≡ 1
(mod 3) or q ≡ 2 (mod 3).

Case 1: q ≡ 1 (mod 3). Then by definition, there exists some k ∈ Z such that
q = 3k + 1. Thus

q2 = (3k + 1)2 = 9k2 + 6k + 1

= 3(3k2 + 2k) + 1

and we have q2 ≡ 1 (mod 3).

Case 2: q ≡ 2 (mod 3). Again, by definition, there exists some k ∈ Z such that
q = 3k + 2. Thus

q2 = (3k + 2)2 = 9k2 + 12k + 4

= 9k2 + 12k + 3 + 1

= 3(3k2 + 4k + 1) + 1

and in this case we again have q2 ≡ 1 (mod 3).

In both cases we see q2 ≡ 1 (mod 3) so the result is proven.

2 Contrapositive

Since p =⇒ q is logically equivavlent to ∼ q =⇒∼ p, we can prove ∼ q =⇒∼ p. It is good
form to alert the reader at the beginning that the proof is going to be done by contrapositive.
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Theorem 2.1. If q2 is divisible by 3, so is q.

Proof: We will prove the contrapositive; i.e., we will prove if q is not divisible by 3, then q2

is not divisible by 3.

By Theorem 1.2, we know that if q is not divisible by 3, then q2 ≡ 1 (mod 3). Thus
q2 is not divisible by 3.

3 Contradiction

A proof by contradiction is considered an indirect proof. We assume p∧ ∼ q and come to
some sort of contradiction.

A proof by contradiction usually has “suppose not” or words in the beginning to alert the
reader it is a proof by contradiction.

Theorem 3.1. Prove
√

3 is irrational.

Proof: Suppose not; i.e., suppose
√

3 ∈ Q. Then ∃ m,n ∈ Z with m and n relatively prime

and
√

3 =
m

n
. Then 3 =

m2

n2
, or 3n2 = m2.

Thus m2 is divisible by 3 so by Theorem 2.1, m is also. By definition, m = 3k for
some k ∈ Z. Hence m2 = 9k2 = 3n2 and so 3k2 = n2. Thus n2 is divisible by 3
and again by Theorem 2.1, n is also divisible by 3. But m, n are relatively prime, a
contradiction.

Thus
√

3 /∈ Q.

4 Mathematical Induction

Mathematical Induction is a method of proof commonly used for statements involving N,
subsets of N such as odd natural numbers, Z, etc. Below we only state the basic method of
induction. It can be modified to prove a statement for any n ≥ N0, where N0 ∈ Z.
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Theorem 4.1 (Mathematical Induction). Let P (n) be a statement for each
n ∈ N. Suppose

1. P (1) is true

2. If P (k) is true, then P (k + 1) is true. The assumption that P (k) true is
called the induction hypothesis.

Then P (n) is true for all n ∈ N.

The theorem uses the Well-ordering Principle (or axiom):

Every non-empty subset of N has a smallest element.

What about a largest element? Does Z follow the well-ordering principle? What about the
set { 1

n
: n ∈ N}?

Proof of Mathematical Induction: Proof by contradiction; i.e., suppose ∃n ∈ N such that
P (n) is false.

Let A = {n ∈ N | P (n) is false}. By supposition, A is nonempty. By the Well
Ordering Principle, A has a smallest element; call it m. Since P (1) is true, 1 /∈ A
and so we know m > 1. We also know by definition of A that P (k) = P (m− 1), with
k = m − 1 ∈ N is true. But we know if P (k) is true then P (k + 1) = P (m) is true,
which is a contradiction of m ∈ A.

Thus P (n) is true ∀n

Mathematical Induction is used to prove many things like the Binomial Theorem and equa-

tions such as 1 + 2 + · · · + n =
n(n + 1)

2
. As in other proof methods, one should alert the

reader at the beginning of the proof that this method is being used.

It is a common mistake to check a few numbers and assume that the pattern holds for all
others. But it actually must be proven, and Mathematical Induction is a way to prove things
for all natural numbers.

Fermat (1601-1655) conjectured 22n +1 is prime ∀n. It was known to be true for n = 1, 2, 3, 4.

Many years later, Euler (1707-1783) found the conjecture to be false for n = 5: 225 + 1 =
641(6,700,417).
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Another common mistake is to work with (using algebra, etc.) the equation or inequality
you are trying to prove. You can only work with one side at a time and get it to look like
the other side. Or, work with one side, get it to look like something and then work with the
other side and get it to look like the same thing. In other words, to prove a = b, prove a = c
and b = c.

Here is an example of a proof by mathematical induction.

Theorem 4.2. For any n ∈ N,

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n + 1)
=

n

n + 1

Proof: We will prove that for any n ∈ N,

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n + 1)
=

n

n + 1
(1)

by Induction.

First, consider the base case when n = 1. Then we have
1

1 · 2
=

1

2
=

1

1 + 1
so the

equation (1) is true for n = 1.

Now suppose (1) is true for some n ∈ N. We want to show the equation (1) is true
for n + 1. In other words, we want to show

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n + 1)
+

1

(n + 1)(n + 2)
=

n + 1

n + 1 + 1
=

n + 1

n + 2
. (2)

If we start with the left-hand-side of equation (2), by the Induction Hypothesis we
have

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n + 1)
+

1

(n + 1)(n + 2)

=

(
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n + 1)

)
+

1

(n + 1)(n + 2)

=
n

n + 1
+

1

(n + 1)(n + 2)
. (3)

5



Simplifying the right-hand side of (3), we get

(3) =
n(n + 2)

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)

=
n2 + 2n + 1

(n + 1)(n + 2)

=
(n + 1)2

(n + 1)(n + 2)

=
n + 1

n + 2

which is the right-hand-side of the equation (2) that we are trying to prove. Thus we
have shown that when the equation (1) is true for n = 1 and when it is true for n, it
is true for n + 1. By Mathematical Induction, (1) is true for all n ∈ N.

Here is another that does not initially involve an equation.

Theorem 4.3. For any n ∈ N, 64 is a factor of 32n+2 − 8n− 9.

Proof: Proof by Mathematical Induction.

For the n = 1 case, we see that 32n+2 − 8n − 9 = 34 − 8 − 9 = 81 − 17 = 64. Thus
P (1) is true.

Now suppose
32n+2 − 8n− 9 ≡ 0 (mod 64). (3)

We need to show that 32(n+1)+2 − 8(n + 1)− 9 ≡ 0 (mod 64).

We have

32(n+1)+2 − 8(n + 1)− 9 = 32n+2+2 − 8n− 9 (4)

= (32n+2)32 − 8k − 17 (5)

= (32n+2)9− 8k − 17 (6)

By the induction hypothesis (3), there exists some m ∈ N such that
32n+2 − 8n− 9 = 64m. Thus 32k+2 = 64m + 8k + 9 and putting this into (6) we have

32(n+1)+2 − 8(n + 1)− 9 = (64m + 8k + 9)9− 8k − 17

= 64 · 9m + 72k + 81− 8k − 17

= 64 · 9m + 64k + 64

= 64(9m + k + 1).

Hence 32(n+1)+2 − 8(n + 1) − 9 is divisible by 64. Thus P (k + 1) is true, so by
Mathematical Induction, P (n) is true ∀n ∈ N.

6


	Direct Proof
	Contrapositive
	Contradiction
	Mathematical Induction

