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ABSTRACT

Let X be a Banach space and T be a bounded linear operator from X to itself
(T € B(X).) An operator D € B(X) is a Drazin inverse of T if TD = DT,

D =TD? and T* = T*+1 D for some nonnegative integer k. In this paper we look
at the Jorgens algebra, an algebra of operators on a dual system, and characterise
when an operator in that algebra has a Drazin inverse that is also in the algebra.
This result is then applied to bounded inner product spaces and *-algebras.

1. Introduction

Let T € B(X), the Banach algebra of bounded linear operators from a Banach
space X to itself. We shall denote the null space of T' as N'(T) and the range of T'
as R(T). An operator D € B(X) is a Drazin inverse of T if TD = DT, D = TD?
and T% = T**1 D for some nonnegative integer k. The smallest such & is called the
index of T" and shall be denoted by k = indp (7).

In Section 2 we summarise some known results about Drazin inverses. In Section
3 we look at a Banach algebra called the Jorgens Algebra. This algebra is so-
named because K. Jorgens presented this algebra in [7] as a way to study integral
operators. The algebra and its spectral theory were also studied by B. Barnes in [1].
Generalised inverses in this algebra were characterised in [11]. Examples of these
algebras can be found in [7; 10].

Let (X, - ||x) and (Y, || - |ly) be Banach spaces in normed duality. That is,
suppose there is a nondegenerate bilinear form (-,-) on X x Y such that for some
M >0,

<M ||z]|lx||ylly forallz € X and y € Y. (1.1)

(2
Suppose T' € B(X) has an adjoint with respect to this bilinear form denoted by
Tt ie. (Tx,y) = (x,TTy) for all x € X and y € Y. Define the Jérgens algebra
Jy (X) = A to be

A={T e B(X)|T" exists in B(Y)}
with norm || 7 || = max{|| T [lop, || T" [lop}-
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With this defined norm, A is a Banach algebra [7]. A will denote the Jorgens
algebra. Because the bilinear form is nondegenerate, an operator 7" in A is uniquely
determined by T and vice-versa. Note that a Jorgens algebra is a saturated algebra,
or more specifically a Y-saturated algebra, and any saturated algebra is also a
Jorgens algebra [6; 7, exercise 3.18].

In Section 3 we present the main result of this paper, which is to characterise
when an operator in the Jorgens Algebra has a Drazin inverse that is also in the
algebra.

In Section 4 we study Banach spaces that have a bounded inner product. We
look at the algebra B of operators that have an adjoint with respect to this inner
product. By defining a specific norm on this algebra, it is made into a Banach
*_algebra. We extend the main result to this situation.

2. Drazin inverses
Following the convention that for an operator T € B(X), T° = I, the identity
operator, there are two useful chains of subspaces:
{0} = M(T?%) C N(T) € N(T?)
X =R(T°) 2 R(T) 2 R(T?)

C---: and

DL

The ascent of an operator T is the smallest nonnegative integer k such that N'(T*) =
N(T*+1), and will be denoted by k = a(T). When no such number exists, the ascent
is considered infinite. The descent of an operator T is the smallest nonnegative k
such that R(T*) = R(T**!), and will be denoted by k = 6(T). If no such number

exists, the descent is infinite. Many algebraic results can be obtained with these
concepts, but only those relevant to this paper will be mentioned.

Theorem 2.1. [12, theorem 3.7] If T € B(X) such that a(T) < 0o and §(T) < oo,
then they are actually equal to the same number k and

X = R(T*) @ N(T").

Theorem 2.2. [8, theorem 4] Let T € B(X). Then T has a Drazin inverse if and
only if T has finite ascent and descent, in which case indp(T) = a(T) = 6(T).

The following theorem and its proof can be found in [2] for the finite dimensional
case and in [8] for the more general Banach space case. Again, we state it here in
order to use it later.

Theorem 2.3. [2; 8] Let T € B(X) have Drazin inverse D with indp(T) = k.
Then

(1) R(D) = R(TH);

(2) N(D) =N(TF); and

(3) TD = DT is the projection onto R(T*) along N'(T*).
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3. Jorgens algebras

Before we characterise Drazin inverses in Jorgens algebras, some useful previous

results from [11] will be stated. For ease of notation, for ¥ € N we shall denote
(TF)T = (TT)* by Tk,

Lemma 1. [11, lemma 4] Let T € A.
(1) R(T)*: = N(T7);

(2) *R(TT) = N(T);
(3) *N(TT) = clyR(T) and
(4) N(T)* = claR(TH).
Lemma 2. [11, lemma 3] The following are true for any projection P € A:
(1) N(P) = *R(P);
(2) R(P) =N (PY);
(3) R(PT) =N(P)*; and
(4) N(PT) = R(P)*.

Thus R(P) and N'(P) are both Y-closed and R(PT) and N'(P") are both X -closed.

Using the above facts about Drazin inverses and Jorgens algebras, a useful
lemma is obtained.

Lemma 3. Let T € A. If §(T) = k < oo, then o(TT) < k. Similarly, if §(TT) =
k < oo then o(T) < k. In particular, if T and TT both have finite index, then they
must have equal index.

PROOF. Suppose T € A with §(T) = k. Then by definition, R(T*) = R(T**!). But
by Lemma 1, R(T*)* = N(T*t) and R(T*+1)+ = N(T*+DT), Thus N (T*) =
N(T®+D1) "and so a(T") < k. A similar argument can be shown if 6(T) = k < oo.
|

Now we can characterise Drazin inverses in Jorgens algebras.

Theorem 3.1. Let T € A with indp(T) = k. Then the following are equivalent:
(1) T has a Drazin inverse D € A;
(2) T' has a Drazin inverse;
(3) 6(TT) < oo; and
(4) R(TH+D1Y is X-closed, i.e., N(T*)* = N(TF1)+ = R(T*+DT),

PROOF. (1) = (2) is clear as D' must be a Drazin inverse of TT due to the
properties of the bilinear form.

(2) = (1). Let B be the Drazin inverse of 7T and D the Drazin inverse of 7. We
need to show that B = Df. By Lemma 3, indp(T") = k. By Theorem 2.3, we also
have

R(TTB) = R(B) = R(T*1) (3.1)
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and
N(T'B) = N(B) = N(T*") = R(T*)* = R(D)*. (3.2)

By Lemma 1, N(T*") = R(T*)+ = R(D)*. Using Theorem 2.1 along with (3.1)
above, any y € Y can be uniquely expressed as y = T'By + y,, where y, €
N(T'B). Similarly, any 2 € X can be uniquely expressed as x = T'Dx + x,,, where
r, € N(D) = R(D)*. Thus

<Dx7y> = <Dl‘,TTBy> + <Dx7yn>
= (Dz, T By)
= (I'Dz, By)
= (T Dz, By) + (z,, By)
~

z, By).

Since z and y were arbitrary, B = D' and D € A.

(2) = (3) is clear by Theorem 2.2.

(3) = (2). Let §(TT) < oo. Since §(T) = k, a(TT) < k by Lemma 3 and thus
indp(T") = k also. Thus 7" has a Drazin inverse by Theorem 2.2.

(4) = (3). Let R(T**+DT) be X-closed. By hypothesis, 6(T) = k = o(T) and
so by Lemma 3 a(7") < k. But by Lemma 1 we have

R(TUEHDT = N(THI)L = N(TF)E =y R(TH). (3.3)

Hence
R(THHVTY € R(T*) C clpy R(TF) = R(T*+DT) (3.4)

and therefore R(T*!) = clyR(T*) = R(T*+DT. Thus §(TT) < k < oc.

(3) = (4). We have now proven that (1), (2) and (3) are equivalent, so D € A
and from Lemma 3, indp(T") = k also. By Theorem 2.3, the projection P onto
R(T*) along N(T*) is TD so must also be in A. Similarly, P = TTD' is the
projection onto R(T*') along N(T*"). By Lemma 2, R(T*") is X-closed. ®

It is indeed necessary for R(T* D) and not just R(T*T), to be X-closed as
the following example that is discussed in [7] will illustrate.

Ezample. Consider the Jorgens algebra with X =Y = C[0, 1] with the standard bi-
linear form (f, g) = fol f(x)g(z) dz. Let v € C with Re(vy) < 0. Define the operator
T, € B(C[0,1]) by

T,f(z) = 27! /ff t77f(t)dt, x€(0,1] (3.50)

0

T, £(0) = (1= )" £(0). (3.50)
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To

C1

T2 1

C2

F1G. 1—Regions of the complex plane based on a = Re(y).

It can be shown that T, € A with

Ti f(z) = 2 / Ceelpwyd, @ e (0,1] (3.60)

x

TI£(0) =~ £(0). (3.60)

Consider the complex plane broken up into the following regions based on a = Re(7)
(see Figure 1)

1 1
¢y = circle with centre — — and radius — —
2a 2a

1 1
co = circle with centre ——— and radius ———
2 2(1—a) 2(1 - a)
ro = region outside ¢y
r1 = region inside ¢; and outside ¢y

ro = region inside cs.

We will denote the spectrum and essential spectrum of an operator T' by o(T')
and o.(T") and the Fredholm index will be denoted by ¢. It can be shown that
o(Ty) = raUcy and 0,(T,) = co. Also it can be shown that o(TY) is the closed disc
with boundary ¢; and ae(T,i ) = ¢1. In particular Table 1 describes the operators
A—T, and A~ T} [7, p. 113].

On the regions A € r1 U ¢1\{0}, the operator A — T/, is invertible, and thus has
a Drazin inverse with indp (A —T7,) = k = 0. If this inverse were in A, the operator
A—Tf would also have to be invertible but it is not. Clearly R([A—T,]*") = C[0,1]
is X-closed and thus the hypothesis of R([]A—T,]*+1T) = R(A=T1) to be X-closed
is needed.
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TABLE 1—Summary of invertibility of A — T, and A — TJ.

A AT, A=T1

o Invertible Invertible

1 Invertible Fredholm, = —1
72 Fredholm, t =1 Fredholm, : = —1
c1\{0} Invertible Not Fredholm
c2\{0} Not Fredholm Fredholm, ¢ = —1
0 Not Fredholm Not Fredholm

4. Banach spaces with bounded inner product

As in [11], we extend Theorem 3.1 to the case where X having a bounded inner
product. Let X be a Banach space with a bounded inner product (-,-). For T' €
B(X), define T* to be the adjoint of T' with respect to the inner product. That is,

(Tz,y) = (x,T*y) for all z,y € X.

Define the algebra B = {T € B(X)|3T* € B(X)}. This is equivalent to the
algebra of all bounded linear operators on X that have bounded extensions to the
Hilbert space completion of X [9]. Define a norm on the elements of B similar to
the Jorgens algebra; that is, for T € B,

T {|= max{|| T [lop, | T" llop}-

This makes B a Banach *-algebra, and Moore-Penrose inverses in B were discussed
in [11].

Throughout the rest of this section, B will denote the *-algebra above with the
inner product space X and 7™ will denote the adjoint of T" in this algebra. All of
the results about Drazin inverses in Jorgens algebras are analogous in this setting.
In particular, we have the following result.

Theorem 4.1. Let T € B with indp(T) = k. Then the following are equivalent:
(1) T has a Drazin inverse D € B;
(2) T* has a Drazin inverse;
(3) 0(T™) < 00; and
(4) R(T*+D*) is X-closed, i.e., N(T*)t = N(TF+1)L = R(T*+1*),

The proof of the previous lemmas and theorem are the same as in the Jorgens
algebra setting as the only difference is that there is a sesquilinear rather than
bilinear form.
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