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Abstract

Let X be a Banach space and T be a bounded linear operator from X to itself
(T ∈ B(X).) An operator D ∈ B(X) is a Drazin inverse of T if TD = DT ,
D = TD2 and T k = T k+1D for some nonnegative integer k. In this paper we look
at the Jörgens algebra, an algebra of operators on a dual system, and characterise
when an operator in that algebra has a Drazin inverse that is also in the algebra.
This result is then applied to bounded inner product spaces and *-algebras.

1. Introduction

Let T ∈ B(X), the Banach algebra of bounded linear operators from a Banach
space X to itself. We shall denote the null space of T as N (T ) and the range of T
as R(T ). An operator D ∈ B(X) is a Drazin inverse of T if TD = DT , D = TD2

and T k = T k+1D for some nonnegative integer k. The smallest such k is called the
index of T and shall be denoted by k = indD(T ).

In Section 2 we summarise some known results about Drazin inverses. In Section
3 we look at a Banach algebra called the Jörgens Algebra. This algebra is so-
named because K. Jörgens presented this algebra in [7] as a way to study integral
operators. The algebra and its spectral theory were also studied by B. Barnes in [1].
Generalised inverses in this algebra were characterised in [11]. Examples of these
algebras can be found in [7; 10].

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces in normed duality. That is,
suppose there is a nondegenerate bilinear form 〈·, ·〉 on X × Y such that for some
M > 0,

|〈x, y〉| ≤ M ‖ x ‖X ‖ y ‖Y for all x ∈ X and y ∈ Y. (1.1)

Suppose T ∈ B(X) has an adjoint with respect to this bilinear form denoted by
T †; i.e. 〈Tx, y〉 = 〈x, T †y〉 for all x ∈ X and y ∈ Y . Define the Jörgens algebra
JY (X) = A to be

A = {T ∈ B(X) |T † exists in B(Y )}
with norm ‖ T ‖ = max{‖ T ‖op, ‖ T † ‖op}.
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With this defined norm, A is a Banach algebra [7]. A will denote the Jörgens
algebra. Because the bilinear form is nondegenerate, an operator T in A is uniquely
determined by T † and vice-versa. Note that a Jörgens algebra is a saturated algebra,
or more specifically a Y -saturated algebra, and any saturated algebra is also a
Jörgens algebra [6; 7, exercise 3.18].

In Section 3 we present the main result of this paper, which is to characterise
when an operator in the Jörgens Algebra has a Drazin inverse that is also in the
algebra.

In Section 4 we study Banach spaces that have a bounded inner product. We
look at the algebra B of operators that have an adjoint with respect to this inner
product. By defining a specific norm on this algebra, it is made into a Banach
*-algebra. We extend the main result to this situation.

2. Drazin inverses

Following the convention that for an operator T ∈ B(X), T 0 = I, the identity
operator, there are two useful chains of subspaces:

{0} = N (T 0) ⊆ N (T ) ⊆ N (T 2) ⊆ · · · ; and
X = R(T 0) ⊇ R(T ) ⊇ R(T 2) ⊇ · · · .

The ascent of an operator T is the smallest nonnegative integer k such thatN (T k) =
N (T k+1), and will be denoted by k = α(T ). When no such number exists, the ascent
is considered infinite. The descent of an operator T is the smallest nonnegative k
such that R(T k) = R(T k+1), and will be denoted by k = δ(T ). If no such number
exists, the descent is infinite. Many algebraic results can be obtained with these
concepts, but only those relevant to this paper will be mentioned.

Theorem 2.1. [12, theorem 3.7] If T ∈ B(X) such that α(T ) < ∞ and δ(T ) < ∞,
then they are actually equal to the same number k and

X = R(T k)⊕N (T k).

Theorem 2.2. [8, theorem 4] Let T ∈ B(X). Then T has a Drazin inverse if and
only if T has finite ascent and descent, in which case indD(T ) = α(T ) = δ(T ).

The following theorem and its proof can be found in [2] for the finite dimensional
case and in [8] for the more general Banach space case. Again, we state it here in
order to use it later.

Theorem 2.3. [2; 8] Let T ∈ B(X) have Drazin inverse D with indD(T ) = k.
Then

(1) R(D) = R(T k);
(2) N (D) = N (T k); and
(3) TD = DT is the projection onto R(T k) along N (T k).
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3. Jörgens algebras

Before we characterise Drazin inverses in Jörgens algebras, some useful previous
results from [11] will be stated. For ease of notation, for k ∈ N we shall denote
(T k)† = (T †)k by T k†.

Lemma 1. [11, lemma 4] Let T ∈ A.
(1) R(T )⊥ = N (T †);
(2) ⊥R(T †) = N (T );
(3) ⊥N (T †) = clYR(T ) and
(4) N (T )⊥ = clXR(T †).

Lemma 2. [11, lemma 3] The following are true for any projection P ∈ A:
(1) N (P ) = ⊥R(P †);
(2) R(P ) = ⊥N (P †);
(3) R(P †) = N (P )⊥; and
(4) N (P †) = R(P )⊥.

Thus R(P ) and N (P ) are both Y-closed and R(P †) and N (P †) are both X -closed.

Using the above facts about Drazin inverses and Jörgens algebras, a useful
lemma is obtained.

Lemma 3. Let T ∈ A. If δ(T ) = k < ∞, then α(T †) ≤ k. Similarly, if δ(T †) =
k < ∞ then α(T ) ≤ k. In particular, if T and T † both have finite index, then they
must have equal index.

Proof. Suppose T ∈ A with δ(T ) = k. Then by definition,R(T k) = R(T k+1). But
by Lemma 1, R(T k)⊥ = N (T k†) and R(T k+1)⊥ = N (T (k+1)†). Thus N (T k†) =
N (T (k+1)†), and so α(T †) ≤ k. A similar argument can be shown if δ(T †) = k < ∞.

Now we can characterise Drazin inverses in Jörgens algebras.

Theorem 3.1. Let T ∈ A with indD(T ) = k. Then the following are equivalent:
(1) T has a Drazin inverse D ∈ A;
(2) T † has a Drazin inverse;
(3) δ(T †) < ∞; and
(4) R(T (k+1)†) is X -closed, i.e., N (T k)⊥ = N (T k+1)⊥ = R(T (k+1)†).

Proof. (1) =⇒ (2) is clear as D† must be a Drazin inverse of T † due to the
properties of the bilinear form.
(2) =⇒ (1). Let B be the Drazin inverse of T † and D the Drazin inverse of T . We
need to show that B = D†. By Lemma 3, indD(T †) = k. By Theorem 2.3, we also
have

R(T †B) = R(B) = R(T k†) (3.1)
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and

N (T †B) = N (B) = N (T k†) = R(T k)⊥ = R(D)⊥. (3.2)

By Lemma 1, N (T k†) = R(T k)⊥ = R(D)⊥. Using Theorem 2.1 along with (3.1)
above, any y ∈ Y can be uniquely expressed as y = T †By + yn, where yn ∈
N (T †B). Similarly, any x ∈ X can be uniquely expressed as x = TDx + xn, where
xn ∈ N (D) = R(D)⊥. Thus

〈Dx, y〉 = 〈Dx, T †By〉+ 〈Dx, yn〉
= 〈Dx, T †By〉
= 〈TDx, By〉
= 〈TDx, By〉+ 〈xn, By〉
= 〈x,By〉.

Since x and y were arbitrary, B = D† and D ∈ A.
(2) =⇒ (3) is clear by Theorem 2.2.
(3) =⇒ (2). Let δ(T †) < ∞. Since δ(T ) = k, α(T †) ≤ k by Lemma 3 and thus

indD(T †) = k also. Thus T † has a Drazin inverse by Theorem 2.2.
(4) =⇒ (3). Let R(T (k+1)†) be X -closed. By hypothesis, δ(T ) = k = α(T ) and

so by Lemma 3 α(T †) ≤ k. But by Lemma 1 we have

R(T (k+1)† = N (T k+1)⊥ = N (T k)⊥ = clXR(T k†). (3.3)

Hence

R(T (k+1)†) ⊆ R(T k†) ⊆ clXR(T k†) = R(T (k+1)†) (3.4)

and therefore R(T k†) = clXR(T k†) = R(T (k+1)†. Thus δ(T †) ≤ k < ∞.
(3) =⇒ (4). We have now proven that (1), (2) and (3) are equivalent, so D ∈ A

and from Lemma 3, indD(T †) = k also. By Theorem 2.3, the projection P onto
R(T k) along N (T k) is TD so must also be in A. Similarly, P † = T †D† is the
projection onto R(T k†) along N (T k†). By Lemma 2, R(T k†) is X -closed.

It is indeed necessary for R(T (k+1)†), and not just R(T k†), to be X -closed as
the following example that is discussed in [7] will illustrate.

Example. Consider the Jörgens algebra with X = Y = C[0, 1] with the standard bi-
linear form 〈f, g〉 =

∫ 1

0
f(x)g(x) dx. Let γ ∈ C with Re(γ) < 0. Define the operator

Tγ ∈ B(C[0, 1]) by

Tγf(x) = xγ−1

∫ x

0

t−γf(t) dt, x ∈ (0, 1] (3.5a)

Tγf(0) = (1− γ)−1f(0). (3.5b)
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Fig. 1—Regions of the complex plane based on a = Re(γ).

It can be shown that Tγ ∈ A with

T †γf(x) = x−γ

∫ 1

x

tγ−1f(t) dt, x ∈ (0, 1] (3.6a)

T †γf(0) = −γ−1f(0). (3.6b)

Consider the complex plane broken up into the following regions based on a = Re(γ)
(see Figure 1)

c1 = circle with centre − 1
2a

and radius − 1
2a

c2 = circle with centre
1

2(1− a)
and radius

1
2(1− a)

r0 = region outside c1

r1 = region inside c1 and outside c2

r2 = region inside c2.

We will denote the spectrum and essential spectrum of an operator T by σ(T )
and σe(T ) and the Fredholm index will be denoted by ι. It can be shown that
σ(Tγ) = r2 ∪ c2 and σe(Tγ) = c2. Also it can be shown that σ(T †γ ) is the closed disc
with boundary c1 and σe(T †γ ) = c1. In particular Table 1 describes the operators
λ− Tγ and λ− T †γ [7, p. 113].

On the regions λ ∈ r1 ∪ c1\{0}, the operator λ− Tγ is invertible, and thus has
a Drazin inverse with indD(λ−Tγ) = k = 0. If this inverse were in A, the operator
λ−T †γ would also have to be invertible but it is not. Clearly R([λ−Tγ ]k†) = C[0, 1]
is X -closed and thus the hypothesis of R([λ−Tγ ](k+1)†) = R(λ−T †γ ) to be X -closed
is needed.
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Table 1—Summary of invertibility of λ− Tγ and λ− T †γ .

λ λ− Tγ λ− T †γ

r0 Invertible Invertible
r1 Invertible Fredholm, ι = −1
r2 Fredholm, ι = 1 Fredholm, ι = −1
c1\{0} Invertible Not Fredholm
c2\{0} Not Fredholm Fredholm, ι = −1
0 Not Fredholm Not Fredholm

4. Banach spaces with bounded inner product

As in [11], we extend Theorem 3.1 to the case where X having a bounded inner
product. Let X be a Banach space with a bounded inner product (·, ·). For T ∈
B(X), define T ∗ to be the adjoint of T with respect to the inner product. That is,

(Tx, y) = (x, T ∗y) for all x, y ∈ X.

Define the algebra B = {T ∈ B(X)
∣∣ ∃T ∗ ∈ B(X)}. This is equivalent to the

algebra of all bounded linear operators on X that have bounded extensions to the
Hilbert space completion of X [9]. Define a norm on the elements of B similar to
the Jörgens algebra; that is, for T ∈ B,

‖ T ‖= max{‖ T ‖op, ‖ T ∗ ‖op}.

This makes B a Banach *-algebra, and Moore-Penrose inverses in B were discussed
in [11].

Throughout the rest of this section, B will denote the *-algebra above with the
inner product space X and T ∗ will denote the adjoint of T in this algebra. All of
the results about Drazin inverses in Jörgens algebras are analogous in this setting.
In particular, we have the following result.

Theorem 4.1. Let T ∈ B with indD(T ) = k. Then the following are equivalent:
(1) T has a Drazin inverse D ∈ B;
(2) T ∗ has a Drazin inverse;
(3) δ(T ∗) < ∞; and
(4) R(T (k+1)∗) is X -closed, i.e., N (T k)⊥ = N (T k+1)⊥ = R(T (k+1)∗).

The proof of the previous lemmas and theorem are the same as in the Jörgens
algebra setting as the only difference is that there is a sesquilinear rather than
bilinear form.
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