DRAZIN INVERSES IN JÖRGENS ALGEBRAS OF BOUNDED LINEAR OPERATORS

By LISA A. OBERBROECKLING Loyola College in Maryland, Baltimore, Maryland

[Accepted 12 October 2007. Published 31 October 2008.]

Abstract

Let X be a Banach space and T be a bounded linear operator from X to itself $(T \in B(X))$. An operator $D \in B(X)$ is a Drazin inverse of T if TD = DT, $D = TD^2$ and $T^k = T^{k+1}D$ for some nonnegative integer k. In this paper we look at the Jörgens algebra, an algebra of operators on a dual system, and characterise when an operator in that algebra has a Drazin inverse that is also in the algebra. This result is then applied to bounded inner product spaces and *-algebras.

1. Introduction

Let $T \in B(X)$, the Banach algebra of bounded linear operators from a Banach space X to itself. We shall denote the null space of T as $\mathcal{N}(T)$ and the range of T as $\mathcal{R}(T)$. An operator $D \in B(X)$ is a Drazin inverse of T if TD = DT, $D = TD^2$ and $T^k = T^{k+1}D$ for some nonnegative integer k. The smallest such k is called the index of T and shall be denoted by $k = \operatorname{ind}_D(T)$.

In Section 2 we summarise some known results about Drazin inverses. In Section 3 we look at a Banach algebra called the Jörgens Algebra. This algebra is sonamed because K. Jörgens presented this algebra in [7] as a way to study integral operators. The algebra and its spectral theory were also studied by B. Barnes in [1]. Generalised inverses in this algebra were characterised in [11]. Examples of these algebras can be found in [7; 10].

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces in normed duality. That is, suppose there is a nondegenerate bilinear form $\langle \cdot, \cdot \rangle$ on $X \times Y$ such that for some M > 0,

$$|\langle x, y \rangle| \le M \parallel x \parallel_X \parallel y \parallel_Y \text{ for all } x \in X \text{ and } y \in Y.$$

$$(1.1)$$

Suppose $T \in B(X)$ has an adjoint with respect to this bilinear form denoted by T^{\dagger} ; i.e. $\langle Tx, y \rangle = \langle x, T^{\dagger}y \rangle$ for all $x \in X$ and $y \in Y$. Define the *Jörgens algebra* $J_Y(X) = \mathcal{A}$ to be

 $\mathcal{A} = \{T \in B(X) \mid T^{\dagger} \text{ exists in } B(Y)\}$ with norm $||T|| = \max\{||T||_{op}, ||T^{\dagger}||_{op}\}.$

^{*}E-mail: loberbroeckling@loyola.edu

doi:10.3318/PRIA.2008.108.1.81

Cite as follows: L.A. Oberbroeckling, Drazin inverses in Jörgens algebras of bounded linear operators, *Mathematical Proceedings of the Royal Irish Academy* **108**A (2008), 81–87; doi:10.3318/PRIA.2008.108.1.81.

Mathematical Proceedings of the Royal Irish Academy, 108A (1), 81–87 (2008) © Royal Irish Academy

With this defined norm, \mathcal{A} is a Banach algebra [7]. \mathcal{A} will denote the Jörgens algebra. Because the bilinear form is nondegenerate, an operator T in \mathcal{A} is uniquely determined by T^{\dagger} and vice-versa. Note that a Jörgens algebra is a saturated algebra, or more specifically a Y-saturated algebra, and any saturated algebra is also a Jörgens algebra [6; 7, exercise 3.18].

In Section 3 we present the main result of this paper, which is to characterise when an operator in the Jörgens Algebra has a Drazin inverse that is also in the algebra.

In Section 4 we study Banach spaces that have a bounded inner product. We look at the algebra \mathcal{B} of operators that have an adjoint with respect to this inner product. By defining a specific norm on this algebra, it is made into a Banach *-algebra. We extend the main result to this situation.

2. Drazin inverses

Following the convention that for an operator $T \in B(X)$, $T^0 = I$, the identity operator, there are two useful chains of subspaces:

$$\{0\} = \mathcal{N}(T^0) \subseteq \mathcal{N}(T) \subseteq \mathcal{N}(T^2) \subseteq \cdots; \text{ and} \\ X = \mathcal{R}(T^0) \supseteq \mathcal{R}(T) \supseteq \mathcal{R}(T^2) \supseteq \cdots.$$

The ascent of an operator T is the smallest nonnegative integer k such that $\mathcal{N}(T^k) = \mathcal{N}(T^{k+1})$, and will be denoted by $k = \alpha(T)$. When no such number exists, the ascent is considered infinite. The descent of an operator T is the smallest nonnegative k such that $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1})$, and will be denoted by $k = \delta(T)$. If no such number exists, the descent is infinite. Many algebraic results can be obtained with these concepts, but only those relevant to this paper will be mentioned.

Theorem 2.1. [12, theorem 3.7] If $T \in B(X)$ such that $\alpha(T) < \infty$ and $\delta(T) < \infty$, then they are actually equal to the same number k and

$$X = \mathcal{R}(T^k) \oplus \mathcal{N}(T^k)$$

Theorem 2.2. [8, theorem 4] Let $T \in B(X)$. Then T has a Drazin inverse if and only if T has finite ascent and descent, in which case $\operatorname{ind}_D(T) = \alpha(T) = \delta(T)$.

The following theorem and its proof can be found in [2] for the finite dimensional case and in [8] for the more general Banach space case. Again, we state it here in order to use it later.

Theorem 2.3. [2; 8] Let $T \in B(X)$ have Drazin inverse D with $\operatorname{ind}_D(T) = k$. Then

(1) $\mathcal{R}(D) = \mathcal{R}(T^k);$

(2) $\mathcal{N}(D) = \mathcal{N}(T^k)$; and

(3) TD = DT is the projection onto $\mathcal{R}(T^k)$ along $\mathcal{N}(T^k)$.

3. Jörgens algebras

Before we characterise Drazin inverses in Jörgens algebras, some useful previous results from [11] will be stated. For ease of notation, for $k \in \mathbb{N}$ we shall denote $(T^k)^{\dagger} = (T^{\dagger})^k$ by $T^{k^{\dagger}}$.

Lemma 1. [11, lemma 4] Let $T \in \mathcal{A}$.

(1) $\mathcal{R}(T)^{\perp} = \mathcal{N}(T^{\dagger});$

 $\begin{array}{c} (2) \quad \bot \mathcal{R}(T^{\dagger}) = \mathcal{N}(T); \\ (2) \quad \bot \mathcal{N}(T^{\dagger}) = \mathcal{N}(T); \\ \end{array}$

(3) $\perp \mathcal{N}(T^{\dagger}) = \operatorname{cl}_{\mathcal{Y}} \mathcal{R}(T)$ and

(4) $\mathcal{N}(T)^{\perp} = \operatorname{cl}_{\mathcal{X}} \mathcal{R}(T^{\dagger}).$

Lemma 2. [11, lemma 3] The following are true for any projection $P \in A$:

(1) $\mathcal{N}(P) = {}^{\perp}\mathcal{R}(P^{\dagger});$ (2) $\mathcal{R}(P) = {}^{\perp}\mathcal{N}(P^{\dagger});$ (3) $\mathcal{R}(P^{\dagger}) = \mathcal{N}(P)^{\perp};$ and

(4) $\mathcal{N}(P^{\dagger}) = \mathcal{R}(P)^{\perp}$.

Thus $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are both \mathcal{Y} -closed and $\mathcal{R}(P^{\dagger})$ and $\mathcal{N}(P^{\dagger})$ are both \mathcal{X} -closed.

Using the above facts about Drazin inverses and Jörgens algebras, a useful lemma is obtained.

Lemma 3. Let $T \in A$. If $\delta(T) = k < \infty$, then $\alpha(T^{\dagger}) \le k$. Similarly, if $\delta(T^{\dagger}) = k < \infty$ then $\alpha(T) \le k$. In particular, if T and T^{\dagger} both have finite index, then they must have equal index.

PROOF. Suppose $T \in \mathcal{A}$ with $\delta(T) = k$. Then by definition, $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1})$. But by Lemma 1, $\mathcal{R}(T^k)^{\perp} = \mathcal{N}(T^{k\dagger})$ and $\mathcal{R}(T^{k+1})^{\perp} = \mathcal{N}(T^{(k+1)\dagger})$. Thus $\mathcal{N}(T^{k\dagger}) = \mathcal{N}(T^{(k+1)\dagger})$, and so $\alpha(T^{\dagger}) \leq k$. A similar argument can be shown if $\delta(T^{\dagger}) = k < \infty$.

Now we can characterise Drazin inverses in Jörgens algebras.

Theorem 3.1. Let $T \in \mathcal{A}$ with $ind_D(T) = k$. Then the following are equivalent:

- (1) T has a Drazin inverse $D \in \mathcal{A}$;
- (2) T^{\dagger} has a Drazin inverse;
- (3) $\delta(T^{\dagger}) < \infty$; and
- (4) $\mathcal{R}(T^{(k+1)\dagger})$ is \mathcal{X} -closed, i.e., $\mathcal{N}(T^k)^{\perp} = \mathcal{N}(T^{k+1})^{\perp} = \mathcal{R}(T^{(k+1)\dagger}).$

PROOF. (1) \implies (2) is clear as D^{\dagger} must be a Drazin inverse of T^{\dagger} due to the properties of the bilinear form.

(2) \implies (1). Let *B* be the Drazin inverse of T^{\dagger} and *D* the Drazin inverse of *T*. We need to show that $B = D^{\dagger}$. By Lemma 3, $\operatorname{ind}_D(T^{\dagger}) = k$. By Theorem 2.3, we also have

$$\mathcal{R}(T^{\dagger}B) = \mathcal{R}(B) = \mathcal{R}(T^{k\dagger}) \tag{3.1}$$

and

$$\mathcal{N}(T^{\dagger}B) = \mathcal{N}(B) = \mathcal{N}(T^{k\dagger}) = \mathcal{R}(T^{k})^{\perp} = \mathcal{R}(D)^{\perp}.$$
(3.2)

By Lemma 1, $\mathcal{N}(T^{k\dagger}) = \mathcal{R}(T^k)^{\perp} = \mathcal{R}(D)^{\perp}$. Using Theorem 2.1 along with (3.1) above, any $y \in Y$ can be uniquely expressed as $y = T^{\dagger}By + y_n$, where $y_n \in \mathcal{N}(T^{\dagger}B)$. Similarly, any $x \in X$ can be uniquely expressed as $x = TDx + x_n$, where $x_n \in \mathcal{N}(D) = \mathcal{R}(D)^{\perp}$. Thus

$$\begin{split} \langle Dx, y \rangle &= \langle Dx, T^{\dagger} By \rangle + \langle Dx, y_n \rangle \\ &= \langle Dx, T^{\dagger} By \rangle \\ &= \langle TDx, By \rangle \\ &= \langle TDx, By \rangle + \langle x_n, By \rangle \\ &= \langle x, By \rangle. \end{split}$$

Since x and y were arbitrary, $B = D^{\dagger}$ and $D \in \mathcal{A}$.

 $(2) \Longrightarrow (3)$ is clear by Theorem 2.2.

(3) \Longrightarrow (2). Let $\delta(T^{\dagger}) < \infty$. Since $\delta(T) = k$, $\alpha(T^{\dagger}) \leq k$ by Lemma 3 and thus $\operatorname{ind}_D(T^{\dagger}) = k$ also. Thus T^{\dagger} has a Drazin inverse by Theorem 2.2.

(4) \implies (3). Let $\mathcal{R}(T^{(k+1)\dagger})$ be \mathcal{X} -closed. By hypothesis, $\delta(T) = k = \alpha(T)$ and so by Lemma 3 $\alpha(T^{\dagger}) \leq k$. But by Lemma 1 we have

$$\mathcal{R}(T^{(k+1)\dagger} = \mathcal{N}(T^{k+1})^{\perp} = \mathcal{N}(T^k)^{\perp} = \mathrm{cl}_{\mathcal{X}}\mathcal{R}(T^{k\dagger}).$$
(3.3)

Hence

$$\mathcal{R}(T^{(k+1)\dagger}) \subseteq \mathcal{R}(T^{k\dagger}) \subseteq \operatorname{cl}_{\mathcal{X}} \mathcal{R}(T^{k\dagger}) = \mathcal{R}(T^{(k+1)\dagger})$$
(3.4)

and therefore $\mathcal{R}(T^{k\dagger}) = \mathrm{cl}_{\mathcal{X}}\mathcal{R}(T^{k\dagger}) = \mathcal{R}(T^{(k+1)\dagger})$. Thus $\delta(T^{\dagger}) \leq k < \infty$.

(3) \Longrightarrow (4). We have now proven that (1), (2) and (3) are equivalent, so $D \in \mathcal{A}$ and from Lemma 3, $\operatorname{ind}_D(T^{\dagger}) = k$ also. By Theorem 2.3, the projection P onto $\mathcal{R}(T^k)$ along $\mathcal{N}(T^k)$ is TD so must also be in \mathcal{A} . Similarly, $P^{\dagger} = T^{\dagger}D^{\dagger}$ is the projection onto $\mathcal{R}(T^{k\dagger})$ along $\mathcal{N}(T^{k\dagger})$. By Lemma 2, $\mathcal{R}(T^{k\dagger})$ is \mathcal{X} -closed.

It is indeed necessary for $\mathcal{R}(T^{(k+1)\dagger})$, and not just $\mathcal{R}(T^{k\dagger})$, to be \mathcal{X} -closed as the following example that is discussed in [7] will illustrate.

Example. Consider the Jörgens algebra with X = Y = C[0, 1] with the standard bilinear form $\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$. Let $\gamma \in \mathbb{C}$ with $Re(\gamma) < 0$. Define the operator $T_\gamma \in B(C[0, 1])$ by

$$T_{\gamma}f(x) = x^{\gamma-1} \int_0^x t^{-\gamma} f(t) \, dt, \quad x \in (0,1]$$
(3.5*a*)

$$T_{\gamma}f(0) = (1-\gamma)^{-1}f(0). \tag{3.5b}$$

84

FIG. 1—Regions of the complex plane based on $a = Re(\gamma)$.

It can be shown that $T_{\gamma} \in \mathcal{A}$ with

$$T^{\dagger}_{\gamma}f(x) = x^{-\gamma} \int_{x}^{1} t^{\gamma-1}f(t) \, dt, \quad x \in (0,1]$$
(3.6*a*)

$$T^{\dagger}_{\gamma}f(0) = -\gamma^{-1}f(0). \tag{3.6b}$$

Consider the complex plane broken up into the following regions based on $a = Re(\gamma)$ (see Figure 1)

$$c_{1} = \text{ circle with centre } -\frac{1}{2a} \text{ and radius } -\frac{1}{2a}$$

$$c_{2} = \text{ circle with centre } \frac{1}{2(1-a)} \text{ and radius } \frac{1}{2(1-a)}$$

$$r_{0} = \text{ region outside } c_{1}$$

$$r_{1} = \text{ region inside } c_{1} \text{ and outside } c_{2}$$

$$r_{2} = \text{ region inside } c_{2}.$$

We will denote the spectrum and essential spectrum of an operator T by $\sigma(T)$ and $\sigma_e(T)$ and the Fredholm index will be denoted by ι . It can be shown that $\sigma(T_{\gamma}) = r_2 \cup c_2$ and $\sigma_e(T_{\gamma}) = c_2$. Also it can be shown that $\sigma(T_{\gamma}^{\dagger})$ is the closed disc with boundary c_1 and $\sigma_e(T_{\gamma}^{\dagger}) = c_1$. In particular Table 1 describes the operators $\lambda - T_{\gamma}$ and $\lambda - T_{\gamma}^{\dagger}$ [7, p. 113].

On the regions $\lambda \in r_1 \cup c_1 \setminus \{0\}$, the operator $\lambda - T_{\gamma}$ is invertible, and thus has a Drazin inverse with $\operatorname{ind}_D(\lambda - T_{\gamma}) = k = 0$. If this inverse were in \mathcal{A} , the operator $\lambda - T_{\gamma}^{\dagger}$ would also have to be invertible but it is not. Clearly $\mathcal{R}([\lambda - T_{\gamma}]^{k\dagger}) = C[0, 1]$ is \mathcal{X} -closed and thus the hypothesis of $\mathcal{R}([\lambda - T_{\gamma}]^{(k+1)\dagger}) = \mathcal{R}(\lambda - T_{\gamma}^{\dagger})$ to be \mathcal{X} -closed is needed.

λ	$\lambda - T_{\gamma}$	$\lambda - T_{\gamma}^{\dagger}$
$egin{array}{c} r_0 & \ r_1 & \ r_2 & \ c_1 ig \{0\} & \ c_2 ig \{0\} & \ 0 & \ \end{array}$	Invertible Invertible Fredholm, $\iota = 1$ Invertible Not Fredholm Not Fredholm	Invertible Fredholm, $\iota = -1$ Fredholm, $\iota = -1$ Not Fredholm Fredholm, $\iota = -1$ Not Fredholm

TABLE 1—Summary of invertibility of $\lambda - T_{\gamma}$ and $\lambda - T_{\gamma}^{\dagger}$.

4. Banach spaces with bounded inner product

As in [11], we extend Theorem 3.1 to the case where X having a bounded inner product. Let X be a Banach space with a bounded inner product (\cdot, \cdot) . For $T \in$ B(X), define T^* to be the adjoint of T with respect to the inner product. That is,

$$(Tx, y) = (x, T^*y)$$
 for all $x, y \in X$.

Define the algebra $\mathcal{B} = \{T \in B(X) | \exists T^* \in B(X)\}$. This is equivalent to the algebra of all bounded linear operators on X that have bounded extensions to the Hilbert space completion of X [9]. Define a norm on the elements of \mathcal{B} similar to the Jörgens algebra; that is, for $T \in \mathcal{B}$,

$$|| T || = \max\{|| T ||_{op}, || T^* ||_{op}\}.$$

This makes \mathcal{B} a Banach *-algebra, and Moore-Penrose inverses in \mathcal{B} were discussed in [11].

Throughout the rest of this section, \mathcal{B} will denote the *-algebra above with the inner product space X and T^* will denote the adjoint of T in this algebra. All of the results about Drazin inverses in Jörgens algebras are analogous in this setting. In particular, we have the following result.

Theorem 4.1. Let $T \in \mathcal{B}$ with $\operatorname{ind}_D(T) = k$. Then the following are equivalent: (1) T has a Drazin inverse $D \in \mathcal{B}$;

- (2) T^* has a Drazin inverse;
- (3) $\delta(T^*) < \infty$; and
- (4) $\mathcal{R}(T^{(k+1)*})$ is \mathcal{X} -closed, i.e., $\mathcal{N}(T^k)^{\perp} = \mathcal{N}(T^{k+1})^{\perp} = \mathcal{R}(T^{(k+1)*}).$

The proof of the previous lemmas and theorem are the same as in the Jörgens algebra setting as the only difference is that there is a sesquilinear rather than bilinear form.

References

[1] B. Barnes, Fredholm theory in a Banach algebra of operators, Mathematical Proceedings of the Royal Irish Academy 87A (1987), 1-11.

- [2] S.L. Campbell and C.D. Meyer, Jr, Generalized Inverses of Linear Transformations, Dover Publications, Inc., New York, 1979.
- [3] S.R. Caradus, Generalized inverses and operator theory, Queen's Papers in Pure and Applied Mathematics, No. 50, Queen's University Belfast, 1978.
- [4] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York–London, 1958– 1971.
- [5] R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Mathematica 103 (1992), 71–7.
- $[6]\,$ H. Heuser, Functional analysis, John Wiley & Sons, 1982.
- [7] K. Jörgens, *Linear integral operators*, Pitman, Boston–London–Melbourne, 1982.
- [8] C.F. King, A note on Drazin inverses, Pacific Journal of Mathematics 70 (1977), 383–90.
- [9] P. Lax, Symmetrizable linear transformations, Communications on Pure and Applied Mathematics 7 (1954), 633–47.
- [10] L. Oberbroeckling, Generalized inverses in certain Banach algebras, Ph.D. Dissertation, University of Oregon, 2002.
- [11] L. Oberbroeckling, Generalized inverses in Jörgens algebras of bounded linear operators, Mathematical Proceedings of the Royal Irish Academy 106A (1) (2006), 85–95.
- [12] A. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Mathematische Annalen 163 (1966), 18–49.
- [13] A. Taylor and D. Lay, Introduction to functional analysis, 2nd edn, John Wiley & Sons, New York, Toronto, 1980.