Use algebra and/or identities, get the equations in form of a **basic trig equation** like \(\cos x = a \), \(\sin x = b \), \(\tan x = c \), etc. where \(a, b \in [-1, 1] \) and \(c \in \mathbb{R} \).

USEFUL FACTS to help solve these:

1. \(\cos x \) and \(\sin x \) are **periodic** with period \(2\pi \).
2. \(\tan x \) is periodic with period \(\pi \).
3. \(\cos(-x) = \cos x \) for any \(x \).
4. \(\sin(\pi - x) = \sin x \) for any \(x \).
5. \(\mathbb{Z} \) is short hand for the set of integers: \(\mathbb{Z} = \{0, \pm1, \pm2, \pm3, \ldots \} \).

To see the last two facts of the above list, draw the angles \(\frac{\pi}{6} \), \(-\frac{\pi}{6} \), \(\pi - \frac{\pi}{6} = \frac{5\pi}{6} \) and \(\pi - (-\frac{\pi}{6}) = \frac{7\pi}{6} \) and see how the sine, cosine and tangents are related. This helps me remember the facts 3 and 4 in order to use them.

There are always 2 solutions to a basic trig equation in one rotation of the unit circle. All other solutions are **coterminal** to these 2 solutions. For example, for \(\cos x = 0 \) has the solution \(x = \frac{\pi}{2} \) and \(\frac{3\pi}{2} \) and all others are coterminal, so can be gotten by adding/subtracting multiples of \(2\pi \) to these. For the solution to \(\sin x = 0 \), there is \(x = 0 \) and \(x = \pi \). Many times we want solutions to be between 0 and \(2\pi \), so in this case (and only this case), there would be 3: 0, \(\pi \) and \(2\pi \) since \(2\pi \) is coterminal to the angle 0.

Solving \(\cos x = a \):

If \(a = 0, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2} \) (or \(\pm \frac{1}{\sqrt{2}} \)), \(\pm \frac{\sqrt{3}}{2} \) or \(\pm 1 \), then \(x \) is one of our special angles.

If not, then \(x = \cos^{-1} a \) is one of our solutions, call it \(s_1 \). \(s_1 = \cos^{-1} a \) is in exact form (for \(a \) not one of the special values listed above). Use your calculator to get a decimal approximation. Remember, by definition of inverse cosine, this angle \(s_1 \) is between 0 and \(\pi \) (inclusive). The other solution, by using fact 3, would be \(-s_1 \). All others would be coterminal. Many times you’re asked to give all solutions (which is implied if not stated otherwise). If so, you’d write:

\[
(\text{all solutions to } \cos x = a \text{ is needed}): \ s_1 + 2n\pi, \ -s_1 + 2n\pi, \ n \in \mathbb{Z}
\]

Other times you’re asked to state all solutions within a certain range, like all solutions in \([0, 2\pi]\). Since \(s_2 = -s_1 \) is not in the this range, you need to find the coterminal angle by adding \(2\pi \). Thus you’d write:

\[
(\text{only solutions in } [0, 2\pi] \text{ needed}): \ s_1, \ -s_1 + 2\pi
\]

Example: \(\cos x = -\frac{1}{3} \). State both all solutions and solutions in \([0, 2\pi]\). Give your answers to 4 decimal places.

One solution is \(\cos^{-1} \left(-\frac{1}{3}\right) \approx 1.9106 \). The other solution would be \(-1.9106\). So all solutions would be \(\approx 1.9106 + 2n\pi, -1.9106 + 2n\pi, n \in \mathbb{Z} \) and the solutions between 0 and \(2\pi \) would be \(\approx 1.9106 \) and \(-1.9106 + 2\pi \approx 4.3726 \).
Solving $\sin x = b$:

Like in the cosine case above, if $b = 0$, $\pm \frac{1}{2}$, $\pm \frac{\sqrt{2}}{2}$ (or $\pm \frac{1}{\sqrt{2}}$), $\pm \frac{\sqrt{3}}{2}$ or ± 1, then x is one of our special angles.

If not, then $x = \sin^{-1} b$ is one of our solutions, call it s_1. $s_1 = \sin^{-1} b$ is in exact form (for b not one of the special values listed above). Use your calculator to get a decimal approximation. Remember, by definition of inverse sine, this angle s_1 is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (inclusive). The other solution, using fact 4 above, would be $s_2 = \pi - s_1$. All other solutions would be coterminal. Like in the cosine case, we may need to adjust these solutions in order for them to be between 0 and 2π, if that is required.

Example: $\sin x = -\frac{1}{3}$. State both all solutions and solutions in $[0, 2\pi]$. Give your answers to 4 decimal places.

One solution is $\sin^{-1} \left(-\frac{1}{3}\right) \approx -0.3398$. Another solution is $\pi - (-0.3398) \approx 3.4814$. So all solutions would be $\approx -0.3398 + 2n\pi$, $3.4814 + 2n\pi$, $n \in \mathbb{Z}$ and solutions between 0 and 2π would be $\approx -0.3398 + 2\pi \approx 5.9434$ and 3.4814.

Solving $\tan x = c$:

If $c = 0$, $\pm \frac{1}{\sqrt{3}}$ (or $\pm \frac{\sqrt{3}}{3}$), $\pm \sqrt{3}$, or ± 1, then x is one of our special angles.

If not, then $x = \tan^{-1} c$ is one of our solutions, call it s_1. $s_1 = \tan^{-1} c$ is in exact form (for c not one of the special values listed above). Use your calculator to get a decimal approximation. Remember, by definition of inverse tangent, this angle s_1 is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (exclusive). Since $\tan x$ has period π, all other solutions are found by adding or subtracting multiples of π to s_1. Thus you can quickly state all solutions or can find the solutions between 0 and 2π by adding multiples of π to s_1.

Example: $\tan x = -\frac{1}{3}$. State both all solutions and solutions in $[0, 2\pi]$. Give your answers to 4 decimal places.

One solution is $\tan^{-1} \left(-\frac{1}{3}\right) \approx -0.3218$. The other solutions would be integer multiples of π. So all solutions would be and the solutions between 0 and 2π would be $\approx -0.3181 + \pi \approx 2.8198$ and $-0.3181 + 2\pi \approx 5.9614$.
