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Abstract— Dimension reduction in molecular dynamics simu-
lation is often realized through a principal component anaysis
based upon a singular value decomposition (SVD) of the
trajectory. The left singular vectors of a truncated SVD provide
the reduced basis. In many biological molecules, such as HIV
protease, reflective or rotational symmetry should be pres#t in
the molecular configuration. Determining this symmetry albws
one to provide SVD major modes of motion that best describe
the symmetric movements of the protein. We present a method
to compute the plane of reflective symmetry or the axis of
rotational symmetry of a large set of points. Moreover, we
develop an SVD that best approximates the given set while
respecting the symmetry.

Interesting subproblems arise in the presence of noisy data
or in situations where most, but not all of the structure is
symmetric. An important part of the determination of the axis
of rotational symmetry or the plane of reflection symmetry
is an iterative re-weighting scheme. This scheme is rapidly
convergent in practice and seems to be very effective in igniag
outliers (points that do not respect the symmetry).

|I. INTRODUCTION

provides an orthogonal basis via the columns\bfand in
this basis we have the representation

x(t) = USv(t)

with the components ofw(¢) being mutually orthogonal
£L5(0, 00) functions. If the the diagonal elements of positive
semidefinite diagonal matri® decay rapidly (assuming they
are in decreasing order) then a reduced basis representatio
of the trajectory may be obtained by discarding the trailing
terms and considering the approximatiep = U S v (t)
where the subscript denotes the leading columns and/or
components.

This is usually approximated using snapshots consisting
of valuesx(t;) of the trajectory at discrete time points and
forming then x m matrix

X = [x(t1),x(t2), .. ., x(t:m)]-
The singular value decomposition (SVD) &f provides

X =USV? =~ U,S, VE

Determining symmetry within a collection of spatially ori-
ented points is a problem that occurs in many fields includingnere
molecular biology, chemistry, and image processing. Is¢he
applications, large amounts of data are generally coliecte
and knowing information about symmetry leads better mod-. . . L

. . . with o1 > 09 > --- > 0,. This is a direct approximation to
eling of physical processes as well as more efficient stora%ge continuous derivation if we consider
and computational schemes.

Given a dynamical systeth = (x), x(0) = xg, there are P lXXT — 1 Zx(tj)x(tj)T.
well known techniques for dimension reduction based upon m m=

the Gramian of the trajectoryx(t), ¢ > 0}. The technique .with the approximation t® given by a quadrature rule. Here

IS known. as Proper Orthqgonal Decom_po;mon (POD) "We are concerned with introducing symmetry constraints int
comquaﬂonaI fl_wd dynamics and as Principal Compone%is approximation when appropriate. In molecular dynamic
Analysis (PCA) in mplecular_ dynamlcs. there is often a known spatial structural symmetry for the

For_ a system with n-dimensional state vectors, guge variables and the purpose of the constrained SVD
Gramian approximation developed here is to impose such symmetry
constraints on the approximate trajectory through a symmet
preserving SVD.

We shall concentrate on determining two types of symme-
try: Rotational and Reflective. Computationally, this riegs
construction of certain symmetric transformations in gahe
IR™ space - reflection and rotation. For reflective symmetry,
we will look for the normalw to a hyperplané{ for which S
can be split into two mirror image sets. While for rotational
symmetry, the axisy about whichS can be rotate®r/k
degrees and return to the same set will be determined. For
practical application, we must also consider noisy data set
and construct a respective normal veokoor axis of rotation
q that diminishes the anomalies of the system. This requires

UTu=vTv =1, S=diag(oy,00, -

,0n)

P= /000 x(7)x(r)T dr

is ann x n symmetric positive (semi-)definite matrix (as-
suming it exists). The eigensystem Bf

P =Us*U”

This work is supported in part by NSF Grant CCR-0306503 an8l 8§
Grant ACI-0325081.

M. Shah is a graduate student in the Department of Compuotdtiand
Applied Mathematics, Rice University, 6100 Main St., HaustTX 77005-
1892, USAn | i @aamri ce. edu

D.C. Sorensen is a professor in the Department of Compaotidtiand
Applied Mathematics, Rice University, 6100 Main St., HaustTX 77005-
1892, USA,sorensen@i ce. edu



an iterative re-weighting scheme that minimizes deviatiotimal hyperplane of reflective symmetry for noisy data is
from symmetry in a weighted Frobenius norm. Finally, foranalyzed in section 3; while choosing the axes of rotational
either type of symmetry, once the normal vector or axis afymmetry for impure data is discussed in section 4. Finally,
rotation has been determined we provide a means to direcigction 5 develops a symmetry preserving SVD that best
compute the SVD of the best approximation to the giveapproximates the given data set and provides an algorithm fo
data set that will also respect the prescribed symmetrynFrodirectly computing the best low rank symmetry preserving
this symmetry preserving SVD, the best low rank symmetrgpproximation in a way that is suitable for large scale
preserving approximation can be created. We also provi@®mputation. Computational results are presented in@ecti
a means to compute just the dominant portion (leading 6.

terms) of the symmetry preserving SVD that is well suited Throughout the discussiot,- || shall denote the 2-norm

to large scale computation. This computation only requiresnd || - || shall denote the Frobenius norm. All lemmas and
matrix-vector products involving the point set (represent theorems are presented here without proof. The complete

as a matrix). details are available in our technical repd#. [
The ARPACK software?] can be used in the large scale
case. The computation is no more expensive, than that of Il. PERFECTSYMMETRY

finding the leading terms of the SVD of the full trajectoryA. Reflective Symmetry

without the symmetry constraint. Computational examples recall that a hyperplari is specified by a constantand
involving the backbone of the HIV-1 protease moleculg, yectorw via H :— {x:7+wTx = 0}. The vectorw is
are pr_esenteq here. 'I_'hese_examples provide trajectoBes tR,1ed the normal to the plane. A set of poits: IR is said
result in matrices of dimension 9,000 by 10,000. The compyg pereflectively symmetric with respect to the hyperplane
tations were performed on a parallel cluster using the [gdral jf fo, every points € S, there exists a poirt € S such that
P_ARPACK version of ARPACK. _ § = s+ w for some scalar with s + Zw € H. We shall
There has been considerable research in the area Qisme thay = 0 throughout this discussion so the plane of
symmetry detection within other applications. Atallaf [ symmetry, specifically the center (defined below), passes

constructs an ordefn logn) algorithm that determines the yq,gh the origin. This can always be attained in general by
line of reflective symmetry of a planar object by reducing the, simple uniform translation of all the points fand by

system to a combinatorial questions on words. Optimizing 2 fixed multiple ofw. For simplicity, we shall also assume
coefficient of symmetry is employed by Marola to determingy, -+ no points ofS lie in the plane of symmetry.
an axis of symmetry for planar image®.[Zabrodskyet. al Lemma 2.1:A setS is reflectively symmetric with respect

[?] employ a continuous symmetry measure and apply it tg, 5 hyperplané{ with unit normalw if and only if
finding 2D reflective and rotational symmetries in chemistry

Kazhdan extends this idea to 3D objects by creating a S=(1-2wwl)S.
continuous 2D function that measures the invariance of anLemma 2.2:If S is reflectively symmetric about/, then
object with respect to reflective symmetry about each plartbe centerc € H where
that goes through the object’'s center of mass. ]
Many papers use the following fundamental properties c= _ZS’
of symmetry, which can be found ir?]} [?], to determine N ses
reflective and rotational symmetry. In this literature, teen
principal axis (or principal components) refer to the eigen
vectors of the correlation matrix of the set of points (thqh
right singular vectors). The observation is that:
- Any plane of symmetry of a body is perpendicular
to a principal axis.
- Any axis of symmetry of a body is a principal Moreover, it is easily arranged that”X, > 0 and that
axis. wl'X; < 0.
The principal axes are the eigenvectors of the covariance i
matrix. Minovic, et. al. start with this idea and build an B. Rotational Symmetry
octree representation to find symmetries of a 3D object. A set of pointsS € IR"((q’ is said to bek-fold
Sun and Sherrah begin by looking at the extended Gaussietationally symmetric about an axig € IR" if there exist
image of an object. Then, they search along the princip&.(q) such that for every poing € S, there existsk — 1
axes for the strongest symmetry measure. Cobiptal [?]  distinct pointssi, g, ...,sx—1 € S such thalR(q)’s = s; for
determine the axes of reflective symmetry by starting wiéh thi = 1,2, ...k — 1. We callq the rotational axis of symmetry
principal axes and optimizing a symmetry measure by usirgndR(q) the rotation matrix.
the Nelder-Mead downhill simplex method. They apply this Lemma 2.3:A setS is k-fold rotationally symmetric with
method to object recognition and brain scan algorithms. respect to a rotational axésif and only if fori = 1,2, ..., k—
This paper is organized as follows. Section 2 defines
perfect reflective and rotational symmetry. Finding an op- S=R(q)'S = (I- QGQT)S.

and N is the number of elements &.
If S is reflectively symmetric abouk{, we can arrange
e points ofS into two sets represented as matriégésand
X such that

Xo = (I-2ww?)X;.



where[q Q] € IR"*("™ is an orthogonal matrix, anB-G €  choosew as the point that minimizelf X, — WX, )D(z)||,
R(=1Dx(=1) rotates anyX € R~ V*("=1) py § = 27/k  as described in Lemma 3.2. Therefore, thehich eliminates
degrees. the most anomalies is the solution to the following max-min
Note, (R(q))* = I - QGQT)* =1. problem:
If S is k-fold rotationally symmetric about,, we can .
. . . max ¢ min F(z,w) ;. (4)
arrange the points af into k& sets represented as matrices Iz=1 | w]=1

X, X1, ..., Xp—1 such that It turns out that whenevew = z solvesmin w1 F(z, )
X; = (I-QGQT)X, then this provides a solution to theax-minproblem and

. ) provides the desired weightidg. Formally, this is expressed
fori=1,2,...k—1. Again, we will assume that the centerj, the following lemma.

c of the data is at the origin. This can always be attained in | emma 3.2:If w = z is a fixed point of ??), thenw is

general by a simple uniform translation of all the points of sojution to #?) and F(z, w) = F(z,z) = N.
S. The existence of a fixed point is irf?]|
We can find the fixed point of?() numerically by using

Ill. OPTIMAL VALUE OF REFLECTIVE NORMAL w < )
G v i . he ai & i | a modified pattern search metho@] [on an equivalent
enerally, in practice, the given se& is not exactly optimization problem:

symmetric with respect to any particular plane. However, we
may think of calculating av that does the best possible job min ¢(z) = ||z — w|| (5)

of specifying a plane that separat8snto two setsX, and Hz.”:l ) ] )
X, (again posed as matrices) that are “nearly” symmetri\“/here' as .before/y is the eigenvector associated to with the
with respect to the plane. smallest eigenvalue of?@) with D = diag(f;(z)1).

It is possible to find an initial separation & into X IV. OPTIMAL VALUE OF ROTATIONAL AXIS q

and X; that are paired to be nearly symmetric with respect R - :
. ; ecall for a perfectly rotationally symmetric set
to a plane determined by a calculated Methods for this P y y sy

are discussed in?]. However, for this discussion, we shall X; =(I-QGQ")'X,

assume that a partitioning 6finto X, andX,, is given such yhere[q Q] is an orthogonal matrix. Therefore, we see that
that the columns of the two matrices are correctly pairetl wit

respect to the desired reflective symmetry. q'X; =q"(I-QGQ")'X, = q" X,
~ The specification ofv may be expressed as an optimizasoy || ; = 1,2, ..., k. However, in general we are not given
tion problem a perfectly symmetric data se&f. Therefore, we need to

calculate a rotational axiq that best fits the data.
min {||(Xo - WX)D||z: W=I-2ww’}, (1) We shall assume a partitioning 6f into Xo, X1, ..., X% _
lwil=1 such that the columns of the matrices are correctly paired.
whereD is a diagonal weighting matrix. The weightidy ~ Therefore, we can now form an optimization problem
is introduced to provide a means to de-emphasize anomalies k—1
and outliers in the supposed symmetry relatioDIis given, min {|lq”[(k — 1)Xo — Z X} (6)
then the minimization can be solved. lali=2 i=1
Lemma 3.1:The solutionw of to the minimization prob- to find our rotational axis of symmetry. It should be
lem (??) is the unit eigenvector corresponding to the smallesioted that Minovicet. al [?], [?] suggest looking at the
eigenvalue of the symmetric indefinite matrix principal axis of the inertia matrix associated with thetidist
M = X,D?X” + X, D?X7. @ eigenvalue for an initial guess to the rotational axis of

We have devised an optimization method based upoﬁymmet_ry (perfect _symmetry requires one dist_inct and tW(.)
pattern search that enables the iterative construction Sgual eigenvalues in 3_'D)' However,_thls teph_mque_may fail
such weights that do ultimately diminish the influence of" the presence of noise, since a single distinct eigenvalue

outliers in the final symmetric SVD approximation. TheMay not eX'St'_ . L
basic idea is to weight theth column of X, — WX, i.e. Lemma 4.1:The solutionq to the minimization problem

ooy i o .
NONS (I 2wa)x§1), by the norm of the reciprocal of (??) is the unit eigenvector corresponding to the smallest

{ . . eigenvalue oMM, where
x\? — (I — 2227)x{"), wherez is a unit vector. Therefore, g

N
. B fi(w)
in (X~ WX)D(z) [} = ; ( e

k—1
M= (k-1)Xo - Y X, 7)

2
) = F(z,w) =
As in the reflective symmetry, we can introduce a weight-
(3)  ing scheme that minimizes the influence of outliers in the
where f;(z) = |x{” — (I - 222")x{"| and D(z) = supposed rotational symmetry relation.
diag { f;(z)~'}. This allows points that are 'more’ symmet- b1
ric with respect taz to have higher weights than those that min {[|q”[(k — 1)Xo — Z X;|D||} 8)
are not. To find the optimal normal to this weighting, we lall=1 P



whereD is a diagonal weighting matrix. and the SVD of this optimal solution is given by
Lemma 4.2:The solution to ?7?) is the unit eigenvectog

corresponding to the smallest eigenvaludD>M7”, where Xo T
M is defined as in7?). 5 =UsVY,

We created a search that diminishes the influence of Xp—1
outliers in the final SVD approximation by weighting where
the i-th column of M by g;(z)~!, where g;(z) = U
||zT [(k— 1)x\? —Z’;ZI xl(-J)} | and z is a unit vector. u - L :0
Therefore, VE U,

i S = VkSo
: T 2
min {lla”[(k = 1)Xo ;XJD(Z)H } vV - v,

= (gi(@)) and fori =0,1,2, ...,k — 1,
= 2 — @ 9 |
; <9i(z)> (& @) ®) U, = R'U,,

which puts greater weight on points that are more symmetrigith
with respect taz than points that are not. Thew, is picked T b1 o
to have the best normal with respect to the weighting a80S0Vo = 7(Xo + R* X, + R™ "X + ... + RX}, ).

described in Lemma 4.2. Hence, the optimag the solution ~ The |oroot]C of the theorem relies upon the following two

1

to the following max-min problem: lemmas.

Lemma 5.2:Suppose that the set is perfectly symmetric
max { min G(z q)} (10) so thatE; =0 forall: =0,1,2,....k—1 and let
lzli=1 Llal=1 "

. . . . . . X U
Again, a fixed point will provide a solution. XO UO
Lemma 4.3:If q = z is a fixed point of ?), thenq is a - = ! sv”
solution to ¢?) andG(z,q) = G(z,z) = N. X, U,
By using the modified compass search method on the kol ol
equivalent optimization problem: be the short form SVD oX. Then
Hl;fﬁifl ¢(z) = ||z — df (11) U, = R'U,

whereq is the eigenvector associated with the smallest eigemherei = 0,1, ...,k — 1. R R
value of ??) with D = diag(g;(z)~!), we can numerically ~ Lemma 5.3:Let Zy = %(XO + X3+ ... + Xg—1). Then
find the fixed point to ??). The procedure for the modified Z = Z, solves

search is also used to solve this problem.
Xo Z

V. BESTSYMMETRIC APPROXIMATION TO A SET mzin | E - : %

Xk-1 Z
It is now possible to specify the best low rank approxima-
n that preserves symmetry. X is a noisy set, then

To find the best reflective or rotational symmetric approx-
imation to a set we can take advantage of the foIIowin%
theorem. For reflective symmet®g = W and W? = I, 0
and in the case of rotational symmetB, = R(q) and

R(q)" =L Xo ):(0
Theorem 5.1:If min | RF1X, Xo 2
by . - F
X = [Xo,Xl,,Xk—l] Xo ka71 XO
where ‘ o1
R X, = X, + E;, — EZHEHQF
k 1 )
andR* =1, then =0

whereR*—iX; = X, + E; and X, = T Zf;ol R*X;.
Xo Xo Now, since

_ min || : - [

X]‘+1:RXJ' Xk}—l kal I

k—1
i=0 R



is unitary, we have As this axis determination is quite demanding, these compu-
A tations indicate that obtaining the leading terms of the SVD
Xo Xo i ble for both th ing and standard
. I ] _ 2 is comparable for both the symmetry preserving and standar
ijlflé-lxo X. . SVD cases. Moreover, both are well suited to the large scale
k-1 Xp-1 setting when PARPACK is used.
k—1 It turns out that HIV-1 protease has a 2-fold rotational
1 ) ; . : o
== > IE2. symmetry and this aspect is preserved while providing
i=0 good approximations to the full trajectory. Visualizatioare
VI. ALGORITHMS AND COMPUTATIONAL RESULTS available at the web site http://WWW.Caam.rice.edu/ segah

The algorithmic structure for both the reflective and ro-under recent talks".

tationally symmetric SVD approximation is the same. It VII. CONCLUSION

consists of tVYO major steps . _ This paper has described a mathematical formulation of
1) Determine the normat or the axisq for reflective or 3 symmetry preserving SVD which has led to practical

rotational symmetry respectively. (parallel) algorithms suitable for large scale computatio
2) Compute the standard SVD Criteria and methods were given for the calculation of
UySoVT = reflective and rotational axis of symmetry of objects/it
=

that are able to overcome problems with noisy data and
outliers. The resulting technique is able to compute thé bes
low rank symmetry preserving approximation to a given set.
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These computations were done for both reflective and
rotational symmetry with essentially the same computafion
time. The computation of the reflective normal or the axis of
rotation was included in both symmetry preserving SVD's.



