Math 421: Take - Home Final

Due: December 12, 2008

This is an open book, open notes, but close friends exam meaning you are not to consult with anyone other than the professor for the exam. I understand and will uphold the ideals of academic honesty as stated in the Honor Code.

Please Sign Name

Please Print Name

Start Time:	
End Time:	
Time Used:	$_{240 \text{ min}}$

Problem	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
7	15	
8	15	
Total	100	

- 1. (15 points) Let S be the Cartesian coordinate plane $\mathbb{R} \times \mathbb{R}$ and define a relation **R** on S by $(a, b)\mathbf{R}(c, d)$ iff a + d = b + c. Verify that **R** is an equivalence relation.
- 2. (10 points) Let S be the set of all circles in the plane. Define $f: S \to [0, \infty)$ by f(C) = the area of C, for all $C \in S$ Is f injective? Is f surjective?
- 3. (10 points) Prove that an accumulation point of a set S is either an interior point or a boundary point of S.
- 4. (15 points) Consider the sequence $\{a_n\} = \{\frac{1}{3n^4+5}\}$. Find the N chosen to show $a_n \to 0$. In other words, prove using the definition that $a_n \to 0$.
- 5. (10 points) Using definitions, prove $x^2 3x + 1$ is continuous at 2.
- 6. (10 points) For which value of x is $f(x) = \frac{2}{x-1}$ not differentiable and why (using definitions)?
- 7. (15 points) Let f be differentiable on \mathbb{R} . Suppose that f(0) = 0 and that $1 \le f'(x) \le 2$ for all $x \ge 0$. Prove that $x \le f(x) \le 2x$ for all $x \ge 0$.
- 8. (15 points) Suppose that f(x) = 2x for all $x \in [0, b]$. Show that f is integrable and that $\int_0^b f(x) dx = b^2$.