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Abstract. The symmetry preserving singular value decomposition (SPSVD) produces the best
symmetric (low rank) approximation to a set of data. These symmetric approximations are charac-
terized via an invariance under the action of a symmetry group on the set of data. The symmetry
groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set
includes the rotational, reflectional, dihedral, and inversion symmetry groups. In order to calculate
the best symmetric (low rank) approximation, the symmetry of the data set must be determined.
Therefore, matrix representations for each of the non-spherical symmetry groups have been formu-
lated. These new matrix representations lead directly to a novel reweighting iterative method to
determine the symmetry of a given data set by solving a series of minimization problems. Once the
symmetry of the data set is found, the best symmetric (low rank) approximation in the Frobenius
norm and matrix 2-norm can be established by using the SPSVD.
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1. Introduction. This paper is concerned with the approximation of a set of
points in the three-dimensional real space ℜ3 that is known to have spatial symme-
tries, perhaps slightly perturbed by noise. To address this structured approximation
problem, we developed a symmetry preserving singular value decomposition (SPSVD)
in [16]. This SPSVD was shown to provide the best symmetric approximation (in the
2- and Frobenius- norms) to a set of spatial data and low rank symmetric SVD ap-
proximations were obtained by truncation of this SPSVD. Here, this work is extended
in two ways. First, we provide a new proof of optimality that rigorously establishes
the low rank approximation obtained via SPSVD truncation is in fact the best low
rank symmetric approximation (of specified rank k) to the given data set. Second, the
symmetries of interest are generalized from considering only reflections or rotations
to considering all the non-spherical symmetry groups in three dimensions (see Figure
1.1). Here we provide a systematic characterization of all the non-spherical symmetry
groups in terms of matrix representations of their generators. These matrix represen-
tations are determined through the calculation of a few (at most three) vectors that
determine the major and minor axes of symmetry. These new characterizations are
essential for extending the methodology we developed in [16] to all the non-spherical
symmetry groups. This generalization is necessary for many applications. Specifically,
in the area of protein dynamics many proteins exhibit symmetries that are more com-
plex than just reflective or rotational symmetry. In this paper, we demonstrate that
the SPSVD applied to such proteins is more accurate in decreasing noise that may
occur during molecular dynamic simulations when compared to the conventional sin-
gular value decomposition (SVD). Moreover, taking advantage of symmetry reduces
the computational costs and storage requirements of the SPSVD as compared to the
SVD.
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Fig. 1.1. Example of each of the seven infinite series that define all the non-spherical symmetry
groups in three dimensions for k = 8. C8 consists of rotations about one axis through the center
c by angles π/4, C8 consists of rotations of π/4 about one axis through the center c immediately
followed by a reflection across the plane perpendicular to the axis, C16C8 is C8 combined with
reflections about the plane perpendicular to the axis, D8 is C8 combined with rotations by π about
8 horizontal axes through c that form equal angles π/8 with each other, D8 is D8 combined with 8
reflection planes containing the main axis of symmetry, D8C8 is C8 along with 8 reflection planes
containing the main axis of symmetry, and D16D8 is D8 along with one plane perpendicular to the
main axis of symmetry (Adapted from http://en.wikipedia.org/wiki/Image:Uniaxial.png 06/10/07
with permission from Andrew Kepert).

Calculating the SPSVD is a two-step process. In the first step, a matrix represen-
tation for the symmetry of a given data set is determined. This process is presented as
a novel iterative reweighting method: a scheme which is rapidly convergent in practice
and seems to be extremely effective in ignoring outliers of the data. In the second
step, the best approximation that maintains the symmetry calculated from the first
step is computed. This approximation is designated the SPSVD of the data set.

There has been considerable research related to the first step of the SPSVD, sym-
metry detection and formulation [1,4,9,12–14,18,22]. However, this previous research
is not applicable to the work presented here since certain information necessary to
characterize the symmetry of the data in matrix form is not available. For example,
both the angle and axis of rotation are necessary in order to compute the standard
Rodrigues matrix. However, in many situations, only the angle of rotation is known.
Therefore, it is necessary to create a new formulation of rotation in the case where the
axis of symmetry is not given. An exception is the work done by Pinsky et al. [14]. In
this paper, Pinsky et al. describe methods to determine inversions, rotations, and re-
flections. It should be noted that their work for rotations and reflections is equivalent
to our earlier work shown in [16]. In the case of inversions, the method shown in this
paper is equivalent to the Pinsky et al. formulation. Another point concerning earlier
research is that no matrix formulation has been given to characterize many of the
symmetry groups in three dimensions. The solution to this problem is presented here
by formulating a concise matrix representation for each of the seven infinite series,
which defines all the non-spherical symmetry groups in three dimensions. The cyclic,
inversion, and dihedral symmetry groups are included in this series.

In addition, there has been some work that is related to the second step of the
SPSVD, symmetric approximations [2, 10, 11, 22, 23]. Specifically, Zabrodsky et al.
[23] define the Folding Method, which is equivalent to the symmetric approximation
discussed in this paper. However, their proof does not reveal the best symmetric low
rank approximation to a set, nor can it be efficiently calculated for large scale matrices
as is possible with the SPSVD.
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This paper is organized as follows. Section 2 defines symmetry and characterizes
the generators for each of the symmetry groups of the seven infinite series in readily
computed matrix form. Section 3 describes an algorithm to identify the symmetry
group for a given set of correctly matched data. Section 4 extends this identification
of symmetry groups by creating an iterative method that effectively ignores outliers
that are inherent in a noisy data set during symmetry detection. Section 5 constructs
the SPSVD which produces the best symmetric low rank approximation to a set of
data. Finally, Section 6 presents applications of the SPSVD to protein dynamics.

Throughout the discussion, ‖ · ‖ shall denote the 2-norm and ‖ · ‖F shall represent
the Frobenius norm. The term smallest eigenvalue will refer to the algebraically
smallest eigenvalue of a symmetric matrix. The n-dimensional identity matrix will be
denoted as In, while the three-dimensional identity matrix will be denoted as I. All
vectors are column vectors.

2. Defining Symmetry. Symmetry may be classified as a set of invertible linear
transformations from ℜ3 → ℜ3 that satisfy the group properties:

• The inverse of a transformation belonging to the set also belongs to the set.
• The product of two transformations belonging to the set also belongs to the set.

As a result, the linear transformations are isomorphic to a group of nonsingular matri-
ces [17]. Moreover, this group of nonsingular matrices must be scale preserving [20]. In
other words, if a symmetry group contains more than one element, then the matrices
must be orthogonal.

In order to characterize specific symmetry groups, certain definitions are now
offered. The number of elements in the group is called the order of the group. Note
that groups may be either finite or infinite. For example, the set of invertible real n×n
matrices forms an infinite group, while the set, {I,−I}, forms a finite group of order
2. A group may be defined by its generator. Here, a subset of a group is a generator
if every element of the group can be written as a (finite) product of elements of the
subset and their inverses [5]. Conventionally, generators are represented by 〈·〉. For
example, {I,−I} is generated by 〈−I〉. When a group, G, acts on a set, S, it permutes
the elements of S. For a specific element s ∈ S, the movement of s is defined as the
orbit of s; i.e.,

OG(s) = {Gs : G ∈ G}.

Therefore, if G = {I2,−I2}, then

OG

(

1
1

)

=

{(

1
1

)

,

(

−1
−1

)}

.

As stated above, a group may be characterized by its generator. In the case of
symmetry, this characterization implies that there exists a finite set of orthogonal
matrices that can generate the full symmetry group of interest. It can be shown that
this generator is a composition of reflections and rotations. Therefore, once matrix
representations for reflection and rotation are formulated, then all symmetry groups
may be defined in terms of these two representations [16].

Definition 2.1. A set of points S ⊂ ℜ3
⋂

w⊥ is reflectively symmetric with
respect to the hyperplane H if for every point s ∈ S, there exists a point ŝ ∈ S such
that ŝ = s + τw for some scalar τ with s + τ

2w ∈ H. Here, a hyperplane H is
specified by a constant γ and a vector w via H := {x : γ + wTx = 0}. In this case,
the vector w is called the normal to the plane. Note that the center c ≡ 1

m

∑

s∈S s of



4 M. I. SHAH AND D. C. SORENSEN

the point set lies in the plane of symmetry, where m is the number of elements in S.
Moreover, since the data is assumed to be mean-adjusted, the center is at the origin,
c = 0 which implies γ = 0.

The following lemma is an immediate consequence of the fact that for each s ∈ S
there is a reflected point ŝ = s + τw ∈ S.

Lemma 2.2. A set S is reflectively symmetric with respect to a hyperplane H
with unit normal w if and only if

S = WS = (I − 2wwT )S,

where W = I − 2wwT is known as the reflection matrix.
Definition 2.3. A set of points S ⊂ ℜ3

⋂

q⊥ is k-fold rotationally symmetric
about an axis q ∈ ℜ3 if there exist an 3× 3 orthogonal matrix Ck such that for every
point s ∈ S, there are exactly k − 1 distinct points s1, s2, . . . , sk−1 ∈ S with Ci

ks = si

for i = 1, 2, . . . , k − 1. The unit vector q is called the axis of symmetry, while Ck is
known as the rotation matrix. Lemma 2.4 gives an expression for the rotation matrix
Ck.

Lemma 2.4. A set S is k-fold rotationally symmetric with respect to an axis of
symmetry q if and only if there exists some Q ∈ ℜ3×2 and Gk ∈ ℜ2×2 such that for
i = 1, 2, . . . , k − 1,

S = Ci
kS = (I − QGkQ

T )iS,

where [q, Q] forms an orthogonal matrix and I2 − Gk is a 2 × 2 orthogonal matrix
that describes a plane rotation through an angle of θ = 2π/k degrees.

Using these formulations for reflection and rotation that are discussed in greater
detail in [15], the seven infinite series that define all the non-spherical symmetry groups
in three dimensions may now be generated (see Figure 1.1). The classification is split
into two sets, as adapted from Weyl [20]: (orientation preserving) proper rotations and
(non-orientation preserving) improper rotations. Observe that the groups of proper
rotations for the seven infinite series are given by Ck and Dk. In these cases, the
cyclic group Ck represents rotations about one axis through the center c by angles
2π/k, and the dihedral group Dk consists of these rotations combined with rotations
by π about k horizontal axes through c that form equal angles π/k with each other.
Therefore, the cyclic group is generated by 〈Ck〉 while the dihedral group is generated
by 〈Ck,C2〉. Notice that in the case of dihedral symmetry, the axis of symmetry for
Ck is perpendicular to the axis of symmetry for C2.

The improper rotations may be added to the classification of the seven infinite
series in only two ways as outlined in Weyl [20]:

1. Adding the reflection Z about the center c (also known as inversion). In
other words, Z carries any point p to its symmetric counterpart p′ found by
lengthening the straight line pc to cp′. Therefore, for a group G of proper
rotations S, a new group G = G + ZG is formed such that ZG contains the
improper rotations ZS.

2. Substituting some proper rotations S by improper rotations ZS as stated
above. Hence, if all proper rotations P′ in the difference G/P, where P is a
subgroup of a proper rotation group G of index 2, is replaced with ZP

′, a new
group of improper rotations GP is formed. Note that half of this new group
consists of the proper rotations P, while the other half is improper.

Starting with the first method, the set of improper rotations are constructed.
Adjoining the inversion, Z, to the cyclic group, Ck, results in the group of k-fold
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inversions, Ck. A body is said to be Ck if it is invariant under the combined trans-
formations of rotation of 2π/k degrees about an axis and reflection in the plane per-
pendicular to that axis. Since this symmetry group is a composition of rotation and
reflection, it is generated by 〈CkWh〉, where Wh represents reflection along the plane
perpendicular (horizontal) to the axis of symmetry for Ck. It should be noted that
the order of transformations does not matter for this case since CkWh = WhCk. The
antiprismatic symmetric group, Dk, is formed when ZDk is appended to the dihedral
group, Dk. This attachment results in the addition of k reflection planes (between the
binary axes) containing the main axis of symmetry to the elements of the dihedral
group. Therefore, the antiprismatic group may be generated by 〈Ck,C2,Wv〉. Here,
the axis of symmetry for C2 is perpendicular to the axis of Ck (as is the case for
dihedral symmetry), and the plane of reflection Wv runs along (vertical) the axis of
symmetry of Ck.

Using the second procedure on Ck and Dk results in the following three groups.
Beginning with the group C2k, the group Ck is indeed a subgroup of order 2. Thus, if
the substitution, as outlined in the second method, is performed, then the prismatic
group C2kCk is constructed. This group contains rotations of 2π/k degrees about an
axis along with reflections about the perpendicular plane. Thus, the group is gener-
ated by 〈Ck,Wh〉, where Wh is reflection along the plane perpendicular (horizontal)
to the axis of symmetry of Ck. Next, consider the dihedral groups. The only sub-
groups of Dk of order 2 are Ck and Dk/2 (for k even). The pyramidal group, DkCk,
constructs k reflective planes running through the main axis of symmetry along with
the base rotational group Ck, while the bipyramidal group, D2kDk, appends a per-
pendicular plane of symmetry to the dihedral group. Therefore, the pyramidal group
is generated by 〈Ck,Wv〉, and the bipyramidal group is generated by 〈Ck,C2,Wh〉.
Again, note that Wv is the plane that runs along (vertical) the axis of symmetry
of Ck, while Wh is the plane that runs perpendicular (horizontal) to the axis of
symmetry of Ck. For both cases, Wv and Wh, the reflection matrix takes the form
I−2wwT . Also, the axis of symmetry for C2 is perpendicular to the axis of symmetry
for Ck.

In conclusion, the seven infinite series in three dimensions are

Ck, Ck, C2kCk for k = 1, 2, . . .

Dk, Dk, DkCk, D2kDk for k = 1, 2, . . .

The generator for each symmetry group along with the order of the group can be seen
in Table 2.1. A note should be made with regards to the order of Ck = 〈CkWh〉.
Here, k is assumed to be even, since

CkWh = I − 2qqT − QGkQ
T ,

where reflection about the normal q is represented by Wh = I − 2qqT and k-fold
rotation about the axis q is denoted as Ck = I − QGkQ

T . Therefore,
• For j odd, W

j
h = Wh and (CkWh)j = C

j
kWh.

• For j even, W
j
h = I and (CkWh)j = C

j
k.

Hence, there is a difference in operation generated by CkWh depending on whether
k is even or odd. If k is odd, reflection (Wh) and k-fold rotation (Ck) must exist
independently as the following demonstrates:

Ck
kW

k
h = Wh ⇒ Wh ∈ 〈CkWh〉,
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Notation Generator Order Description

Ck 〈Ck〉 k Rotations of 2π/k about one axis

Ck 〈CkWh〉 k (even) Ck followed by perpendicular reflection

C2kCk 〈Ck,Wh〉 k Ck along with perpendicular reflection

Dk 〈Ck,C2〉 2k Ck along with π rotations about k axes

DkCk 〈Ck,Wv〉 2k Ck along with k reflection planes

Dk 〈Ck,C2,Wv〉 4k Dk along with k reflection planes

D2kDk 〈Ck,C2,Wh〉 4k Dk along with perpendicular reflection
Table 2.1

The seven infinite series

and

Ck−1
k Wk−1 = Ck−1

k

Ck+1
k Wk+1 = C1

k

}

⇒ Ck ∈ 〈CkWh〉.

Thus, Ck = C2kCk if k is odd. This is not necessarily the case when k is even [8].
Therefore, when dealing with Ck, k is assumed to be even.

Now that the seven infinite series have been formed, methods to calculate the
symmetry group for a given set of correctly matched data may now be constructed.

3. Calculating Symmetry. In the previous section, the generators for each of
the symmetry groups of the seven infinite series were formulated. Here, this research
is extended to the computation of the generator for a given set of correctly matched
data. Methods to match the set of data given are shown in [1, 6, 23].

As discussed in the introduction, there has been considerable research in the area
of symmetry detection. However, this work generally does not take advantage of infor-
mation that is inherent in the data set, such as knowledge of the generator. Instead,
the research assumes the information a priori. This section formulates methods to
calculate the generator of symmetry for each of the seven infinite series by taking
advantage of the correct matching of the data.

Classification of the generators of symmetry may be split into three sections:
those that can be formulated with one axis, two axes, and three axes. To begin, the
series that can be constructed with just one axis of symmetry will be considered. This
discussion will be followed by methods to calculate matrix formulations for the series
composed of double and triple axes.

3.1. Single axis computation. The cyclic Ck, inversion Ck, and prismatic
C2kCk groups may all be constructed using just one axis of symmetry. This fact is
obvious for the cyclic Ck and inversion Ck groups, but may not be so apparent for
the prismatic C2kCk = 〈C2k,Wh〉 group since the generator contains two elements.
However, both elements need the same axis q to formulate its content because

Ck = I − QGkQ
T

Wh = I − 2qqT ,

where the columns of Q span the space orthogonal to q and Wh represents reflection
along the plane perpendicular (horizontal) to the axis of symmetry q.

In order to develop a means to calculate the axis of symmetry, one must recall
that the data set of m points is assumed to be correctly matched. Therefore, for the
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k-fold cyclic group, the data is split into k matrices Xj ∈ ℜ(3×m/k) for j = 0, . . . , k−1
such that

Xj = C
j
kX0 = (I − QGkQ

T )jX0, (3.1)

where Ck is the k-fold rotation matrix. For the case of k-fold inversion, the data is
again split into k matrices. However, here k is assumed to be even as discussed in the
previous section. Therefore, for j = 0, . . . , k − 1

Xj = (CkWh)jX0,

where CkWh is the k-fold inversion matrix. In other words,

Xj =
[

qqT + Q(I− Gk)jQT
]

X0

for j even, and

Xj =
[

−qqT + Q(I− Gk)jQT
]

X0

for j odd. Finally, for the k-fold prismatic group, the data is split into 2k matrices
such that for j = 0, 1, . . . , k − 1,

X2j =
[

qqT + Q(I− Gk)2jQT
]

X0,

X2j+1 =
[

−qqT + Q(I − Gk)2j+1QT
]

X0.

Using these relationships, a characteristic for the axis of symmetry for each of the
symmetry groups may be formed. This formulation is an extension of our characteri-
zation of the cyclic group in [16].

Lemma 3.1. Suppose X0 has full rank and that Gk is nonsingular. Then q is a
major axis of symmetry if and only if

qT M = 0,

where

M = (k − 1)X0 −
k−1
∑

j=1

Xj

for the cyclic group,

M = (k − 1)X0 −
k−1
∑

j=1

(−1)jXj

for the inversion group, and

M = (2k − 1)X0 −
2k−1
∑

j=1

(−1)jXj

for the prismatic group.
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Proof. The case for the inversion group will only be shown here since the case
for the cyclic group is shown in [16] and the case for the prismatic group follows this
proof closely. First, note that if q is an axis of symmetry, then qT Q = 0 must be true
and thus, for j even,

qT Xj = qT
[

qqT + Q(I − Gk)jQT
]

X0 = qTX0,

while for j odd,

qTXj = qT
[

−qqT + Q(I − Gk)jQT
]

X0 = −qTX0,

which implies

qT M = qT
[

(k − 1)X0 −
k−1
∑

j=1

(−1)jXj

]

= (k − 1)qT X0 −
k−1
∑

j=1

(−1)jqTXj

= (k − 1)qT X0 −
k−1
∑

j=1

qT X0

= 0.

Now, suppose q̂ is any unit vector that satisfies q̂T M = 0 (in place of q). Note that

k−1
∑

j=1

(−1)jXj =

k−1
∑

j=1

[

qqT + (−1)jQ(I − Gk)jQT

]

X0

=

[

(k − 1)qqT + Q

(

k−1
∑

j=1

(−1)j(I − Gk)j

)

QT

]

X0

=
[

(k − 1)qqT − QQT
]

X0

= kqqT X0 − X0

and (I−Gk)k = I implies
∑k−1

j=1 (−1)j(I−Gk)j = −I when Gk is nonsingular. From
this, it follows that

M = (k − 1)X0 −
k−1
∑

j=1

(−1)jXj = k
(

I − qqT
)

X0.

Therefore, since X0 is full rank,

0 = q̂TM = kq̂T
(

I− qqT
)

X0

implies that q̂ = q(q̂T q). Since both q and q̂ are unit length, it follows from Cauchy–
Schwarz that q̂ = ±q.

Therefore, the solution of the optimization problem

min
‖q‖=1

‖qTM‖F (3.2)

specifies the approximate axis of symmetry q. Thus, q can be computed as follows:
Lemma 3.2. The solution q to the minimization problem (3.2) is the unit eigen-

vector (up to sign) corresponding to the smallest eigenvalue of MMT .
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3.2. Double axes computation. For the dihedral Dk and pyramidal DkCk

groups, two axes – the major q axis and minor p axis – are necessary in order to
compute the generator of each group. Here, the major axis of symmetry q denotes
the axis of rotation for the Ck rotation, whereas the minor axis p represents the axis
of symmetry for the C2 rotation for the dihedral group or the normal of Wv for the
pyramidal group.

To calculate the generator for the dihedral and pyramidal groups, one takes ad-
vantage of the correctly matched data set. In the case of the dihedral Dk group, the
data is matched within 2k matrices

X2j = C
j
kX0

X2j+1 = C2X2j = C2C
j
kX0

for j = 0, 1, . . . , k − 1. Similarly, the pyramidal DkCk group is matched for j =
0, 1, . . . , k − 1

X2j = C
j
kX0

X2j+1 = WvX2j = WvC
j
kX0,

where Wv is the plane that runs along (vertical) the axis of symmetry.
Solving the following minimization problem:

min
‖q‖=1

‖qTM‖F (3.3)

gives the major axis of symmetry q for the dihedral and pyramidal groups where

M = (2k − 1)X0 −
2k−1
∑

j=1

(−1)jXj (3.4)

for dihedral symmetry and

M = (2k − 1)X0 −
2k−1
∑

j=1

Xj (3.5)

for pyramidal symmetry. This property is a consequence of the following lemma.
Lemma 3.3. Suppose X0 has full rank and that Gk is nonsingular. Then q is a

major axis of symmetry if and only if

qT M = 0.

Proof. The proof follows the proof technique of Lemma 3.1
Lemma 3.4. The solution q to the minimization problem (3.3) is the unit eigen-

vector corresponding to the smallest eigenvalue of MMT , where M is defined in Equa-
tion (3.4) for the dihedral group and in Equation (3.5) for the pyramidal group.

The procedure for calculating the minor axis follows a similar method as the
major axis. For both the dihedral and pyramidal cases, the data is configured into
two matrices

X̂0 = [X0,X2, . . . ,X2k−2]

X̂1 = [X1,X3, . . . ,X2k−1].
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Therefore,

X̂1 = C2X̂0

for the dihedral group, and

X̂1 = WvX̂0

for the pyramidal group. Thus, calculating the minor axis for the dihedral group
follows the form of the 2-fold cyclic group. In other words, the minor axis is calculated
as the axis of symmetry of Lemma 3.2, namely the minor axis is the eigenvector
associated with the smallest eigenvalue of NNT , where

N = X̂0 − X̂1.

The case of the pyramidal group follows a different form. Since X̂1 is reflectively
symmetric to X̂0, calculating the minor axis reduces to calculating the normal to the
plane of symmetry. In our earlier work [16], we showed that the normal to the plane
of symmetry can be calculated by solving

min
‖w‖=1

{‖X̂0 − WvX̂1‖F }, (3.6)

where Wv = I − 2wwT .
Lemma 3.5. The solution w to the minimization problem (3.6) is the unit eigen-

vector corresponding to the smallest eigenvalue of the symmetric indefinite matrix

N = X̂0X̂
T
1 + X̂1X̂

T
0 .

In conclusion, calculating the generator for the double axes symmetry groups
results in computing a major axis q and a minor axis p. Once these axes are known,
the full symmetry group can be formed as

〈C2,Ck〉 = 〈I − 2PPT , I− QGkQ
T 〉,

for the case of the dihedral group and

〈Wv,Ck〉 = 〈I − 2ppT , I − QGkQ
T 〉

for the case of the pyramidal group. Here, the columns of P and Q span the space
perpendicular to p and q, respectively.

3.3. Triple axes computation. The remaining two groups of the seven infinite
series need three axes – the major q, minor p, and semi-minor w – in order to
calculate their generator. The generator for both the antiprismatic Dk group and
the bipyramidal D2kDk group consist of the dihedral group Dk = 〈Ck,C2〉 plus a
reflection operator. Here, the reflection is vertical Wv for the case of the antiprismatic
group, and horizontal Wh for the case of the bipyramidal group. Since each generator
contains the dihedral group, the major and minor axes are computed as stated in the
previous section. This section will concentrate on determining the third axis, the
semi-minor axis w.

Here, the data is split into 2 matrices, X̂0 and X̂1, where

X̂0 = [X0,X1, . . . ,X2k−1]
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contains the dihedral group and

X̂1 = [WX0,WX1, . . . ,WX2k−1]

contains the reflection of the dihedral group. Again, W = Wv for the antiprismatic
group and W = Wh for the bipyramidal group. Then the semi-minor axis w can be
calculated as discussed in Lemma 3.5. In other words, the semi-minor axis w is just
the eigenvector associated with the smallest eigenvalue of

N = X̂0X̂
T
1 + X̂1X̂

T
0 .

4. Noisy Symmetry. Up to this point, we have only considered data that is
perfectly symmetric. However, most applications will involve imperfectly measured
observations; the given data is generally noisy. Therefore, during symmetry detection,
there may be a need to weight certain elements in the data set higher than others. For
instance, when calculating the generator of a protein dynamics trajectory, one may
wish to place more emphasis on the docking site since this site determines the function
of the protein and is where most of the dynamics occur. On the other hand, the side
chains, generally, have more noise and less influence on the overall dynamics of the
trajectory. Thus, less weight should be placed on those regions. This section begins
by calculating the generator of symmetry for a known weighting. This is followed by
an introduction to a novel iterative method that automatically chooses weightings to
effectively ignore outliers of the data set.

4.1. General Weighting. It has been demonstrated that for each symmetry
group, calculating the optimal axis (axes) of symmetry reduces to an optimization
problem: To calculate an axis of symmetry

q = argmin
‖q‖=1

‖qTM‖F ,

where M is described in the previous section, and to calculate the normal

w = argmin
‖w‖=1

‖X0 − WX1‖F ,

where W = I−2wwT . A weighting may be inserted into these minimization problems
to de-emphasize anomalies in the supposed symmetry relation. In each case, a diago-
nal weighting matrix D = diag{δi} is introduced, where the jth diagonal weights the
jth column of the matrix of the objective function. Thus, the optimization problems
become: To calculate an axis of symmetry

q = argmin
‖q‖=1

‖[qTM]D‖F , (4.1)

and to calculate the normal

w = argmin
‖w‖=1

‖[X0 − WX1]D‖F , (4.2)

where W = I− 2wwT .
Lemma 4.1. The solution q to the minimization problem (4.1) is the unit eigen-

vector corresponding to the smallest eigenvalue of

MD2MT .
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where M may be any of the forms defined in Lemma 3.1, Equation (3.4), or Equation
(3.5).

Lemma 4.2. The solution w to the minimization problem (4.2) is the unit eigen-
vector corresponding to the smallest eigenvalue of the symmetric indefinite matrix

N = X0D
2XT

1 + X1D
2XT

0 .

Since the minimizations are with respect to the Frobenius norm, both the above
optimization problems (4.1) and (4.2) can be expanded column-wise into

min
‖w‖=1

m
∑

j=1

δjw
TMiw, (4.3)

where

Mi = (Mei)(Mei)
T

for calculation of the axis of symmetry, and

Mi =
∥

∥

∥x
(0)
i − x

(1)
i

∥

∥

∥

2

I + 2
(

x
(0)
i x

(1)
i

T
+ x

(1)
i x

(0)
i

T)

for calculation of the normal to the plane of reflective symmetry.
Note that the calculation of the minor axis and semi-minor axis is similar to the

methods given above. Once the major axis has been calculated, the data is split into
two matrices X̂0 and X̂1 as described in Sections 3.2 and 3.3. The orthogonality
properties between the axes are accomplished by projecting a guess for the (semi-)
minor axis onto Q by the projection matrix QQT , where the columns of Q span Q,
the space perpendicular to the axis q.

4.2. Discrepancy Weighting. An iterative reweighting scheme is now devel-
oped to construct a D that diminishes the influence of outliers in the SPSVD. This
weighting is adapted from our previous work [16], but here it is generalized for the
generator of each of the seven infinite series.

Given a guess z to the normal/axis of symmetry, the weight δi of the minimization
(4.3) is set as

δi = (zT Miz)
−1.

Therefore, if z is a good approximation to the normal/axis, then zT Miz will be small;
thus δi will be a large weight.

Define

F (z,w) =
m
∑

i=1

δiw
T Miw =

m
∑

i=1

fi(w)

fi(z)

where fi(z) = zT Miz. The best normal/axis with respect to this weighting, may be
found as the w that solves the respective minimization problem described in Lemma
4.1 or Lemma 4.2. Note that the approximate w associated with this weighting solves

min
‖w‖=1

F (z,w), (4.4)
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Fig. 4.1. Convergence of discrepancy weighting. Notice how as the iterates progress, less
emphasis is placed on the outliers (stars). Adapted from [16]

which suggests an iterative reweighting scheme that adjusts the vector z to optimally
diminish the effect of outliers. Beginning with an initial guess z0, iterate

zp+1 = argmin
‖w‖=1

F (zp,w), p = 0, 1, 2, . . . (4.5)

until ‖zp+1−zp‖ is sufficiently small. Notice that the fixed point to this iteration will
solve the following max-min problem

max
‖z‖=1

{

min
‖v‖=1

F (z,v)

}

(4.6)

as the following lemma indicates.
Lemma 4.3. If v = z is a fixed point of the minimization problem (4.4), then z

is a solution to the max-min problem (4.6), and F (z,v) = m.
The above lemma explains that a fixed point of iteration (4.5) solves the max-

min problem (4.6). The existence of a fixed point to the iteration (4.5) is shown in
Theorem 4.4.

Theorem 4.4. There is a point z∗ of unit norm such that

z∗ = argmin
‖w‖=1

F (z∗,w). (4.7)

The proofs of these results are essentially the same as the proofs given for the cor-
responding results (Lemma 3.3 and Theorem 3.4) in [16], and hence are not repeated
here. Together, these results show that there is at least one fixed point that solves
(4.7) and that any such point solves the max-min problem (4.6). Iteration (4.5) is
designed to produce such a fixed point and hence solve the max-min problem (4.6).

Remark: Theorem 4.4 assumes Φ(z) 6= 0. This is a reasonable assumption since

the only way Φ(z) = 0 is if ‖x(0)
j ‖ = ‖x(1)

j ‖ = . . . = ‖x(k−1)
j ‖ for some n-tuplet

(x
(0)
j ,x

(1)
j , . . . ,x

(k−1)
j ), where k is dependent on the order of the symmetry group in

consideration. Since the sets are assumed to be noisy, it is unlikely that these norms
are precisely equal in practice. We have created another formulation that solves this
problem which involves taking the inner-product between the current and previous
iterate. Though the analysis of this inner-product weighting is not as complete as the
weighting presented in this paper. Details can be found in the technical report [15].

The convergence history depicted in Figure 4.1 is typical, and iteration (4.5) seems
to be convergent in practice, though no analytic proof showing the convergence of the
iterates zp has been given. However, the sequence of function values does converge.
This fact is established with the following theorem, Theorem 4.5.
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Theorem 4.5. The sequence

F (zp, zp+1) → m,

as p → ∞.
This discrepancy weighting has been very effective in ignoring anomalies in real-

life applications. Specifically, we have tested this method in the area of molecular
dynamics. Results can be seen in Section 6.

A note should be made in the case of formulating an iterative search for the double
and triple axes formulation. The algorithm begins by searching for an optimal major
and (semi-) minor axes of symmetry with no weights. To preserve the orthogonality
conditions, the (semi-) minor axis is projected onto the space perpendicular to the
major axis with a projection matrix, as described before. Then, the iteration calcu-
lates the weights by alternatively projecting the major/(semi-) minor axis onto the
space perpendicular to the (semi-) minor/major axis. This projection is required to
preserve the orthogonality conditions. The iteration continues until the current and
previous major/(semi-) minor axis is within a specified tolerance. We have observed
that the iteration may begin to oscillate between the best major and (semi-) minor
axes if the orthogonality conditions between the axes are skewed due to noise. How-
ever, unless the noise is extreme, these oscillations will occur close to the pre-defined
tolerance.

5. Optimal Symmetry Preserving SVD. In the previous sections, the seven
infinite series were generated by the composition of two transformations: reflection
and rotation. Once constructed, these orthogonal transformations will build the best
symmetric approximation to a set of data that preserves the specified symmetry.
The construction is specified as the statement of Theorem 5.1. This new result fully
generalizes [16]. Moreover, this new proof also rigorously establishes the leading rank
k truncation of the SPSVD as the best symmetric low rank approximation of rank k
to the original given data.

Once the symmetry of the data is known and represented as {Ri}, for i =
0, 1, . . . , k − 1, where k is the order of the group, the best symmetric approxima-
tion may be constructed with a procedure based upon the following theorem. Here,
the data set is assumed to be correctly matched. Recall, methodology for calculating
such a matching is presented in [1, 6, 23].

Theorem 5.1. Suppose a given data set X is split into correctly matched subsets
Xi where

RT
i Xi = X0 + Ei.

and Ei is the error resulting from a noisy symmetric data set. Then the best symmetric
approximation

X̂ =











X̂0

X̂1

...

X̂k−1











with regards to both the 2-norm and Frobenius norm can be found by minimizing

min
X̂j=RjX̂0

∥

∥

∥

∥

∥

∥

∥







X0

...
Xk−1






−







X̂0

...

X̂k−1







∥

∥

∥

∥

∥

∥

∥

2

.
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The solution to this minimization problem can be calculated with the SVD of

USVT =







X̂0

...

X̂k−1







where

U =
1√
k







U0

...
Uk−1






, S =

√
kS0, V = V0,

and

Uj = RjU0, for j = 0, 1, 2, . . . , k − 1,

with

U0S0V
T
0 =

1

k
(X0 + RT

1 X1 + RT
2 X2 + · · · + RT

k−1Xk−1).

Moreover, the best rank-ℓ symmetric approximation to the original data set is

ℓ
∑

j=1

σjujv
T
j

where uj and vj are the jth column of U and V, respectively, and σj is the jth
singular value of S ordered decreasingly.

Proof. Consider

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















X0

X1

...
Xk−2

Xk−1















−

















X̂0

X̂1

...

X̂k−2

X̂k−1

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

B































X0

X1

...
Xk−2

Xk−1















−

















X̂0

X̂1

...

X̂k−2

X̂k−1

































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















X1

X2

...
Xk−1

X0















−

















X̂1

X̂2

...

X̂k−1

X̂0

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

where the orthogonal matrix B is given by

B =











0 I

. . .
. . .

0 I

I 0











.
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For j = 1, 2, . . . , k − 1, define the orthogonal matrices

Bj =
1√

j + 1

(

RT
k−j

√
jI

−√
jI Rk−j

)

and B̂j =





I3(k−(j+1))

Bj

I3(j−1)



 .

Let

Z0 = X0

Zj = RT
k−jXk−j + RT

k−(j−1)Xk−(j−1) + . . .

+ RT
k−1Xk−1 + X0

Nj = −1√
j(j+1)

(jXk−j − Rk−jZj−1) .

Then
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















X0

X1

...
Xk−2

Xk−1















−

















X̂0

X̂1

...

X̂k−2

X̂k−1

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















X1

X2

...
Xk−1

X0















−

















X̂1

X̂2

...

X̂k−1

X̂0

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

B̂jB̂j−1 . . . B̂1































X1

X2

...
Xk−1

X0















−

















X̂1

X̂2

...

X̂k−1

X̂0

































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥





























X1

X2

...
Xk−(j+1)

1√
j+1

Zj

Nj

...
N1





























−































X̂1

X̂2

...

X̂k−(j+1)√
j + 1X̂0

0
...
0































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

since

Bj

(

Xk−j
1√
j
Zj−1

)

=

( 1√
j+1

Zj

Nj

)

and Bj

(

X̂k−j√
jX̂0

)

=

(√
j + 1X̂0

0

)

.

If this process continues until j = k − 1, then

∥

∥

∥

∥

∥

∥

∥

∥

∥











X0

X1

...
Xk−1











−











X̂0

X̂1

...

X̂k−1











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











1√
k
Zk−1

Nk−1

...
N1











−











√
kX̂0

0
...
0











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

1√
k
Zk−1 −

√
kX̂0

∥

∥

∥

∥

2

+

k−1
∑

i=1

‖Nj‖2.
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Hence, the best symmetric rank-ℓ approximation to the original data set is determined
by the best rank-ℓ approximation, X̂0, to 1

kZk−1 for both the Frobenius norm and
2-norm [7].

Intuitively, Theorem 5.1 states that the best symmetric approximation, X̂, to
a data set X is given by first finding the best symmetric approximation, X̂0, to
X0 by calculating the average of Rk−iXi, for i = 1, 2, . . . , k − 1, where Rk−iXi is
the transformation of Xi onto X0. Notice if X is a perfectly symmetric set, then
Rk−iXi = X0, so the average of Rk−iXi for i = 0, 1, . . . , k − 1 will equal X0. Next,
to determine the symmetric approximation, X̂, multiply X̂0 by Ri to get X̂i and
concatenate the X̂i to form X̂. This step forces X̂ to be a perfectly symmetric set,
and Theorem 5.1 proves that this is, in fact, the best symmetric approximation to
X with respect to the Frobenius norm and matrix 2-norm. Note that this result is
identical to the conclusions of Zabrodsky et al. in [23]. However, Theorem 5.1 also
presents a way to efficiently calculate the best symmetric low rank approximation to
the data set by taking an SVD.

It is observed in Theorem 5.1 that the best symmetric ℓ-rank approximation to
a data set X is given by UℓSℓV

T
ℓ , where the SVD of the symmetric approximation

X̂ = USVT . Here, Uℓ and Vℓ represent the leading ℓ columns of U and V, and Sℓ

denotes the leading ℓ×ℓ principal submatrix of S. One may construct Uℓ,Sℓ, and Vℓ

in a straightforward manner using the ARPACK software on a serial computer or
P ARPACK on a parallel platform. This is useful for the large data sets that often
appear in applications such as molecular dynamics where the matrices are on the
order of tens of thousands [16, 21]. It may seem counterintuitive to use ARPACK on
such dense systems. However, for large data sets, it is computationally more efficient
to calculate only the leading ℓ terms (singular values and vectors) using ARPACK
instead of computing all of the singular values and then discarding n−ℓ of them. One
may either specify ℓ or utilize a restarting scheme to adjust ℓ until σℓ ≥ tol∗σ1 > σℓ+1.
The important computational point is that only matrix-vector products are needed
to calculate

u =
1

k
(X0 + RT

1 X1 + RT
2 X2 + · · · + RT

k−1Xk−1)v,

and this is essentially the same work per iteration one would require to compute the
corresponding standard SVD of X without the symmetry constraint.

6. Experimental Results. A number of experiments were performed on a Mac
2.16 GHz Intel Core 2 Duo machine. These experiments are an extension of the
SPSVD approximations shown in our previous paper [16], which only presents data
sets with 2-fold rotational or reflectional symmetries of size approximately 10, 000 ×
10, 000. However, in [16] there is also a discussion of symmetrizing the motions
(modes) of the molecule. In addition, low rank symmetric approximations are made
by looking at just the first few modes of the molecule. Here, the concentration is
placed on the structure of the molecule. However, if a trajectory for each molecule is
presented, then the symmetric motions of the molecule can be calculated as shown in
our previous work [16]. In this paper, the generator for each molecule represents more
complex symmetries such as 5-fold rotational symmetry to represent single axis com-
putation (Figure 6.1) and dihedral symmetry to represent double axes computation
(Figure 6.2). In addition, the best symmetric approximation (SPSVD) to the original
data set is calculated. Since molecules are chiral, reflective symmetry is not possible
with these structures. Thus, no example is given to illustrate triple axes computa-
tions. However, simulations have been performed on contrived data sets with triple
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(a) 1SAC (b) 1SAC (red) with
symmetric approxima-
tion (blue)

(c) 1SAC (red) with
noise added (blue)

(d) 1SAC (red) with
full symmetric approx-
imation of the noisy
molecule (blue)

Fig. 6.1. Different approximations of ISAC.

axes generators with results that are similar to the single and double axes generators
presented here.

The data sets consist of molecules acquired from the Protein Data Bank (PDB)
(http://www.rcsb.org/pdb). The first molecule, serum amyloid P-component (1SAC),
which exhibits 5-fold rotational symmetry, has been linked to Alzheimer’s disease
[19], while the second molecule, superoxide dismutase (1IDS), which exhibits 2-fold
dihedral symmetry, has been shown to reduce radiofibrosis in breast cancer patients
[3].

1SAC is a 5-fold rotationally symmetric molecule that consists of 8245 atoms
(Figure 6.1(a)). Thus, the matrix of coordinate points is of size 3× 8245. Calculating
the generator for this molecule took less than a second to compute. The tolerance for
each iterations of the fixed point iteration (4.5) is shown in Figure 6.3(a). Notice that
in Figure 6.1(b) the best symmetric approximation (SPSVD) (blue) is superimposed
on top of the original (red) data set. For purposes of illustration, artificial noise is
introduced into the molecule (Figure 6.1(c)) and the SPSVD is applied to the noisy
molecule (Figure 6.1(d)). The SPSVD averages out the noise introduced into the
molecule and the resulting SPSVD approximation has a better fit to the original
molecule. This conclusion is analytically supported by noting that the relative error
in the 2-norm between the noisy and original molecule is approximately 0.142, while
the relative error between the symmetric (noisy) molecule and the original molecule is
approximately 0.066. In other words, the SPSVD approximation cuts the noise level
by more than a half.

(a) 1IDS with genera-
tor

(b) 1IDS (red) with
SPSVD approxima-
tion (blue)

(c) 1IDS (red) with
a low rank approxi-
mation of the noisy
molecule (blue)

(d) 1IDS (red) with
a low rank symmetric
approximation of the
noisy molecule (blue)

Fig. 6.2. Different approximations of 1IDS.
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(b) Fixed point iteration for 1IDS

Fig. 6.3. Fixed point iteration.

In the case of the 6272 molecule 1IDS, calculation of the generator took approxi-
mately 5 seconds to compute. The increased computational time is a result of needing
two axes, the major and minor, in order to formulate the generator for 2-fold dihedral
symmetry. The tolerance for each step of the fixed point iteration being applied to
1IDS is shown in Figure 6.3(b). The final iteration’s major and minor axes is shown
on top of 1IDS in Figure 6.2(a), whereas the best symmetric approximation (SPSVD)
(blue) is shown on top of the original (red) data set in Figure 6.2(b).

A simulated trajectory of matrix size 18, 816 × 100 is constructed in order to
compare low rank approximations obtained from the SVD and SPSVD with results
appearing in Figure 6.2(c) and 6.2(d), respectively. Details of the formulation of this
simulated trajectory can be found in [16,21]. As with the full SPSVD approximation,
the rank-6 SPSVD approximation better fits the original data set when compared to
the rank-6 SVD approximation. This conclusion is analytically supported by noting
that the relative error between a rank-6 approximation of the noisy molecule and the
original molecule is approximately 0.195, while the relative error between the a rank-6
symmetric (noisy) molecule and the original molecule is approximately 0.098. In other
words, a low rank SPSVD approximation also cuts the noise level by more than a half
when compared to a standard low rank SVD approximation to the molecule.

A note should be made with regards to the computational cost and storage re-
quirements of calculating an SPSVD (low rank) approximation compared to an SVD
(low rank) approximation. First, the computational cost for the SPSVD is far less
than the cost of an SVD approximation since the only the base set of the SVD, which
is 1/k the size of the original data, has to be calculated. Then the full SPSVD may
be formed by computing the orbit of the base set. Second, with regards to storage
requirements, only the base set and generator have to be stored for an SPSVD ap-
proximation, which equals a storage reduction of approximately 1/k. The full approx-
imation can later be obtained by calculating the orbit of the base set. In conclusion,
the SPSVD approximation not only reduces noise but the storage and computational
requirements are also decreased when compared to conventional SVD methods.

7. Conclusion. This paper focuses on the formulation and application of a sym-
metry preserving singular value decomposition (SPSVD). The SPSVD extends the
singular value decomposition by constructing the best low rank approximation to a
data set that also preserves the data set’s inherent symmetry. Among others, reflec-
tive, rotational, inversion, and dihedral symmetry groups are considered here.
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In order to calculate an SPSVD, a matrix representation of the symmetry group
of interest needs to be obtained. This step is established by an iterative reweight-
ing process that effectively ignores anomalies in the data set. Once the symmetry
is known, then the SPSVD may be built using only matrix-vector products and is
no more expensive than conventional SVD methods. Additionally, the SPSVD may
reduce noise that has been introduced into the data set. In conclusion, the SPSVD is
an efficient method for calculating the best symmetric (low rank) approximation to a
set of data in both the Frobenius norm and the matrix 2-norm.
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