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Abstract—In this paper we develop the best homogeneous
matrix transformation to fit two streams of dynamic six degree of
freedom (6DOF) data. In particular, we compare object position
and orientation results from two 6DOF sources. A problem
that arises when comparing these two data streams is that they
are not necessarily in the same coordinate system. Therefore, a
method to transform one coordinate system to the other is needed.
We solve this problem by developing an optimization problem
that minimizes the space between each coordinate system. In
other words, we construct a rotation and translation which best
transforms one coordinate space to the other.

I. I NTRODUCTION

With the advent of newer and more technologically ad-
vanced robotic vision systems, there is greater need for novel
mathematical techniques to calibrate these systems. In par-
ticular, there is a need to calibrate six degrees of freedom
(6DOF) sensors which track not only the position (3DOF) but
also the orientation of an object. These six degrees of freedom
represent translations along three perpendicular axes: left and
right (along thex-axis), forward and backward (along they-
axis), and up and down (along thez-axis); along with the
rotations about those three perpendicular axes (Rx, Ry, and
Rz). They may be arranged as a homogeneous transformation

H =

(
R t

0 1

)
,

whereR = RxRyRz represents the orientation of a given
object andt = (x, y, z)T represents the position of the given
object. Given two streams of such six degrees of freedom data,

X =
[(

R0 t0
0 1

)
,
(

R1 t1
0 1

)
, . . . ,

(
Rn−1 tn−1

0 1

)]

X̂ =
[(

R̂0 t̂0
0 1

)
,
(

R̂1 t̂1
0 1

)
, . . . ,

(
R̂n−1 t̂n−1

0 1

)]
,

this paper constructs the best rotationR and translationt that
fits the data. In other words, the best homogeneous matrix
H = ( R t

0 1 ) that minimizes

min
H

‖HX− X̂‖2 (1)

is constructed.
The solutionH to minimization problem (1) involves a two

step process:

1) Find the rotationR that minimizes

min
R

∥∥
R( R0 t0 ... Rn−1 tn−1 )−( R̂0 t̂0 ... R̂n−1 t̂n−1 )

∥∥2

(2)
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where

ti = ti − t and t =
1

n

n−1∑

i=0

ti

t̂i = t̂i − t̂ and t̂ =
1

n

n−1∑

i=0

t̂i

2) Set the best transformation

t = t̂ − Rt, (3)

whereR is calculated from Step 1.

The simpler problem of finding a closed-form solution to the
best rotation and translation to fit two sets of three-dimensional
point correspondences (which represents only position and
hence 3DOF) has been around since the 1980’s [1], [2].
Most formulations are reduced to finding a rotationR and
translationt that solves

min
R,t

‖X̂− (RX + t)‖2 (4)

whereX andX̂ are3× n matrices such that thei-th column
of X̂ is given by

X̂i = RXi + t + Ei,

whereXi is the i-th column ofX andEi is a noise vector.
This problem is commonly known as theabsolute orientation
problem. One of the issues with this problem is that there are
certain cases where there are many – if not infinite – solutions
to minimization problem (4) [1]. An example of this case is
when all the points lie on the same line. This degeneracy
is not a problem with the 6DOF representation. In Section
IV, an example will be presented which compares solutions
calculated using the absolute orientation (3DOF) problem (4)
with the homogeneous problem (6DOF) (1) introduced here.

Historically, there are four main approaches to finding
closed form solutions of the absolute orientation problem.The
first method by Arun, Huang, and Blostein [1] is based on
finding the best orthogonal matrix which fits the set of data
and declares that the best rotation. An equivalent method - by
Horn, Hilden, and Negahdaripour [2] - looks for the square-
root of a symmetric matrix to represent rotation. A problem
with both of these methods is that the matrix that is calculated
may not necessarily be a rotation (in fact it is a reflection).
Therefore, the results from the algorithm may have to be
disregarded. In contrast, the method that is presented hereis
guaranteed to be a rotation matrix. The last two approaches –
one by Horn [3] and the other by Walker, Shao, and Volz
[4] – are based on quaternions. Modern extensions of the
conventional four methods have been formulated by Umeyama
[5] and Kanatani [6].
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In this paper,‖ · ‖ denotes the Frobenius norm, so

‖A‖ =
√

tr (AAT )

whereT denotes the transpose operator. And, tr() denotes the
matrix trace operation, while diag(d1 . . . dn) represents the
diagonal matrix with entriesd1 . . . dn.

II. SIMPLIFYING ROTATION AND TRANSLATION

Here, we will outline the methodology that reduces the
original system (1) to the two-step process shown in Equation
(2) and Equation (3). First, observe that

‖HX− X̂‖2 =

=
∥∥∥( R t

0 1 )
(

R0 t0 ... Rn−1 tn−1

0 1 ... 0 1

)
−

(
R̂0 t̂0 ... R̂n−1 t̂n−1

0 1 ... 0 1

)∥∥∥
2

=
∥∥∥
(

RR0−R̂0 Rt0+t−t̂0 ... RRn−1−R̂n−1 Rtn−1+t−t̂n−1

0 0 ... 0 0

)∥∥∥
2

=
∥∥∥R( R0 ... Rn−1 )−( R̂0 ... R̂n−1 )

∥∥∥
2

+
∑

n−1

i=0
‖Rti+t−t̂i‖

2 (5)

Now, let the centroids for the two data sets be given by

t =
1

n

n−1∑

i=0

ti and t̂ =
1

n

n−1∑

i=0

t̂i

and define

T = t + Rt − t̂.

Then for i = 0, . . . , n − 1

ti = ti − t and t̂i = t̂i − t̂.

Therefore,

n−1∑

i=0

‖Rti + t − t̂i‖
2 =

=

n−1∑

i=0

‖R(ti − t) − (t̂i − t̂) + t + Rt − t̂‖2

=

n−1∑

i=0

‖Rti − t̂i + T‖2

=

n−1∑

i=0

‖Rti − t̂i‖
2 + 2TT

( n∑

i+1

Rti − t̂i

)
+ n‖T‖2

=

n−1∑

i=0

‖Rti − t̂i‖
2 + n‖T‖2

since
n−1∑

i=0

Rti − t̂i = 0.

So, if Equation (5) is minimized then

min
H

‖HX− X̂‖2

= min
R,t

∥∥∥R( R0 ... Rn−1 )−( R̂0 ... R̂n−1 )
∥∥∥

2

+
n−1∑

i=0

‖Rti+t−t̂i‖
2

= min
R,t

∥∥∥R( R0 ... Rn−1 )−( R̂0 ... R̂n−1 )
∥∥∥

2

+

n−1∑

i=0

‖Rti−̂ti‖
2+n‖T‖2

= min
R,t

∥∥∥R( R0 t0 ... Rn−1 tn−1 )−( R̂0 t̂0 ... R̂n−1 t̂n−1 )
∥∥∥

2

+n‖T‖2

Note for any given rotationR, we can setT = 0 by allowing

t = t̂ − Rt ⇒ T = t + Rt − t̂ = 0. (6)

Thus, in order to calculate Equation (1), we first calculateR

that minimizes

min
R

∥∥∥R ( R0 t0 ... Rn−1 tn−1 ) − ( R̂0 t̂0 ... R̂n−1 t̂n−1 )
∥∥∥

2

,

then we set
t = t̂ − Rt.

A. Finding R

In the previous section, we found that finding the best fitting
homogeneous transformation matrix is dependent on finding
the best rotation that minimizes Equation (2):

min
R

∥∥R ( R0 t0 ... Rn−1 tn−1 ) − ( R̂0 t̂0 ... R̂n−1 t̂n−1 )
∥∥2

.

For simplicity, this problem will be reformulated to

min
R

∥∥RX − X̂
∥∥2

(7)

where

X = ( R0 t0 ... Rn−1 tn−1 )

X̂ = ( R̂0 t̂0 ... R̂n−1 t̂n−1 ) .

However,
∥∥RX − X̂

∥∥2
=

∥∥X
∥∥2

− 2tr(RXX̂
T ) +

∥∥X̂
∥∥2

Therefore, theR that solves the minimization problem (7) is
equivalent to the rotation matrixR that solves

max
R

tr(RXX̂
T ) (8)

There is a plethora of research on finding the best rotation
matrix R. Most of these methods are based on finding the
best orthogonal matrix that fits the data. In most applications,
this method works. However, there can be instances where the
best orthogonal matrix that is produced could have determinant
−1, meaning that the best orthogonal matrix is not a rotation
but actually a reflection. In this section, we will describe a
method for calculating the best rotational approximation to a
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set of data that is guaranteed to have determinant 1. This work
is equivalent to Umeyama’s work [5].

In order to construct the best rotation, the following Lemma
will be of importance.

Lemma 2.1: For a given3 × 3 matrix M and rotationR

tr(RM) ≤ tr(DΣ), (9)

where

D =

{
diag(1, 1, 1) if det(VU

T ) = 1,

diag(1, 1,−1) if det(VU
T ) = −1

and the full singular value decomposition (SVD) of

M = UΣV
T .

Proof: First notice that

tr(RM) = tr(RUΣV
T ) = tr(R(UDV

T )DΣ),

since D
2 = I and tr(AB) = tr(BA) for matrices A

and B of appropriate degree. But̂R = R(UDV
T ) is an

orthogonal matrix with determinant 1 and hence a rotation
matrix. Therefore,

tr(RM) = tr(R̂DΣ) ≤ tr(DΣ)

Moreover, if a rotationR can be constructed such that

tr(RXX̂
T ) = tr(DΣ),

then the minimization problem (7) is solved.
Theorem 2.2: The solution to the maximization problem (8)

is
R = VDU

T

where the full SVD of the3 × 3 matrix

XX̂
T = UΣV

T

and

D =

{
diag(1, 1, 1) if det(VU

T ) = 1,

diag(1, 1,−1) if det(VU
T ) = −1

Proof: From Lemma 2.1, the maximization problem (8)
is solved if a rotation matrixR can be constructed such that

tr(RXX̂
T ) = tr(DΣ).

Let
R = VDU

T .

Then

tr(RXX̂
T ) = tr([VDU

T ][UΣV
T ]) = tr(DΣ).

Therefore, the optimal homogeneous matrixH =
(

R t
0 1

)

may be constructed by

1) Setting
R = VDU

T ,

where the SVD of

XX̂
T = UΣV

T

and

D =

{
diag(1, 1, 1) if det(VU

T ) = 1,

diag(1, 1,−1) if det(VU
T ) = −1

.

2) Setting
t = t̂ − Rt.

III. E RROR METRICS

For many applications, it is beneficial to understand how
well the homogeneous matrixH fits the orientation of the
6DOF data independently of the position of the 6DOF data.
Therefore, a description of separating the orientations from the
positions in minimization problem (1), i.e.

min
H

‖HX− X̂‖2

is provided in this section. This separation leads directlyto a
formalization of an error metric.

From Equation (5),

‖HX− X̂‖2 =

=
∥∥∥R( R0 ... Rn−1 )−( R̂0 ... R̂n−1 )

∥∥∥
2

+
∑

n−1

i=0
‖Rti+t−t̂i‖

2

=

n−1∑

i=0

∥∥RRi − R̂i

∥∥2
+

n−1∑

i=0

∥∥Rti + t − t̂i
∥∥2

.

Therefore, we have a separation of the orientations from the
positions. Moreover, once theR and t of the homogeneous
matrixH are calculated from the procedure outlined in Section
II, a means to find how wellR and t fit the data can be
constructed. Notice that for the orientation

∥∥RRi − R̂i

∥∥2
=

∥∥RRi‖
2 − 2tr

(
RRiR̂

T
i

)
+ ‖R̂i‖

2

= 6 − 2tr
(
RRiR̂

T
i

)

= 6 − 2(1 + 2 cos θ)

≤ 8.

since‖R‖2 = 3 and tr(R) = 1+2 cos θ for any rotation matrix
R with eigenvalues{1, cos θ± i sin θ}. Therefore, if the angle
θ between the column space ofRRi andR̂i is approximately
equal to 0, then6 − 2(1 + 2 cos θ) ≈ 6 − 2(3) = 0, whereas
if the angleθ ≈ π then6 − 2(1 + 2 cos θ) ≈ 6 − 2(−1) = 8.
Therefore, a metric orpercentage of accuracy to evaluate the
orientation for a given homogeneous matrixH (hence rotation
R and translationt) can be calculated as

0 ≤ 1 −
1

8

∥∥RRi − R̂i

∥∥2
≤ 1.

A metric for the positions can be calculated in a similar
way. In this case, we are interested in norm

‖Rti + t − t̂i‖
2.

In other words, we want to see how close the vectorRti + t

is to t̂i for a given rotationR and translationt. In order to
construct a metric orpercentage of accuracy for this data, we
consider the dot product of the normalized vectors, i.e.

0 ≤

∣∣∣∣∣
t̂Ti (Rti + t)∥∥t̂i

∥∥∥∥Rti + t
∥∥

∣∣∣∣∣ ≤ 1.
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Fig. 1. 3DOF verses 6DOF on a linear dataset.

In other words, if the angle between the vectors is 0 we have
100% accuracy. A point of concern with this method is that
the magnitude of the vectors are not taken into consideration.
Therefore, this metric may exhibit100% accuracy while the
vectors are not exactly equal. Hence, one may want to compare
the magnitude of

‖Rti + t − t̂i‖

with the magnitude of the positionsti and t̂i to determine the
accuracy of the algorithm. However, this metric does not have
an upper-bound so it may be difficult to compare the results
from different problem sets as is possible with the first metric
presented.

IV. EXPERIMENTS

A series of experiments were conducted at the Purdue
Robot Vision Lab in April of 2008 which compared a 6DOF
laser tracker (considered ground truth) with a real-time visual
servoing system [7]. Problems arose with these experiments
due to difficulties with hand-calibration of the 6DOF laser
tracker with the real-time visual servoing system. Therefore,
a means to mathematically calibrate the two systems was
necessary.

The data streams from both systems were comprised of
6DOF data; however the streams were with respect to two
different coordinate systems. Therefore, the method outlined in
this paper was used in order to calibrate the systems. In other
words, a homogeneous matrixH was produced to transform
the real-time visual servoing system’s data stream into the
6DOF laser tracker’s coordinate system.

Experiments were conducted to compare the percentage
of accuracy between the two systems using 3DOF (absolute

orientation) and 6DOF (work presented here) using Matlab 7
on a Mac 2.16 GHz Intel Core 2 Duo machine. In Figure 1, the
data stream consisted of data collected from a linear motion.
As suggested in [1], infinite solutions exist for the solution
of the 3DOF problem. In contrast, the 6DOF problem creates
a unique solution with very high accuracy. The percentage
of accuracy of the rotations with respect to 6DOF is nearly
100% while for 3DOF it hovers around75%. With regards
to the translations, the two procedures are nearly identical –
both having very high accuracy. This is a result of the fact
that both methods involve the termT = t + Rt − t̂ which
can be arbitrarily set to 0 given any rotationR. In addition,
the translational error is at most 10 mm, which is a 2 digit
reduction in size compared to the data which is in the 2000-
3000 mm range. This reduction acknowledges a close fit of the
translation results. It should be noted that the 3DOF solution
presented in Figure 1 is the solution that Matlab 7 produced
which is a result of slight noise in the collection of data.

V. CONCLUSION

In this paper, we constructed the best homogeneous matrix
H to fit two streams of 6DOF data. In other words, we found
the best rotationR and translationt that would transform
the coordinate system of the first data stream to the second.
We tested the algorithm on two data streams that modeled
linear motion. We found that the algorithm constructed in
this paper (6DOF) has a unique solution as opposed to the
conventional absolution orientation (3DOF) model. In addition
the percentage of accuracy is higher for the 6DOF algorithm
when compared to the conventional 3DOF algorithm.
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