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Setting

Suppose that K is a field, let

S � Krx1, � � � , xd s,

and consider only those ideals in S generated by monomials.

Running examples
M � pxy , yz, xzq in S � Krx , y , zs

N � pab,bc, cd ,de,ef q in S � Kra,b, c,d ,e, f s
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The LCM-lattice

Definition: The LCM-lattice is the set LI of least common
multiples of the monomial generators of I, ordered by divisibility.

Example: For M � pxy , yz, xzq the Hasse diagram of LM is

1

xy yz xz

xyz
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The LCM-lattice

Example: The LCM-lattice LN has Hasse diagram

1

ab bc cd de ef

abc bcd cde def abde abef bcef

abcd bcde cdef abdef abcef

abcde bcdef

abcdef
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Atomic lattices and monomial ideals

Theorem [Phan, 2006] Every finite atomic lattice L may be
associated to a monomial ideal IpLq. Furthermore, the
LCM-lattice of IpLq is isomorphic to L.

Process: For every finite atomic lattice, find a monomial
labeling of the lattice elements so that LCMs are respected.

ú

1

xy2 y2z3 xz3

xy2z3
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A commutative algebra problem

Open Problem [Kaplansky, 1960s]

Non-iteratively construct the minimal free resolution of the
S-module S{I using the combinatorial data of the generators of
I and the arithmetic in the field K.
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A minimal resolution of S{M

Example: For the ideal M � pxy , yz, xzq, the module S{M has
the following minimal free resolution.

S
r xy yz xz s
ÐÝÝÝÝÝÝÝ

B1
S3

�
z 0
�x x
0 �y

�
ÐÝÝÝÝÝÝ

B2
S2 Ð 0

Note: Among others, the monomial relation
z � pxyq � x � pyzq � 0 is encoded in this resolution.
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What is a resolution? (Linear Algebra Version)

Let A be a p � q matrix whose entries are from K.

Problem: Solve the system of linear equations AX � 0.

Methodology: Consider A as a linear transformation and write
X for a matrix of column vector solutions X1,X2, � � � ,Xn.

We may therefore encode solutions in the sequence

Kp A
ÐÝ Kq X

ÐÝ Kn.
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What is a resolution? (Linear Algebra Version)

Our set of solutions is complete if and only if n ¥ q � rankpAq.

If the solutions are linearly independent, i.e. if n � q � rankpAq
then we have an exact sequence

Kp A
ÐÝ Kq X

ÐÝ Kq Ð 0.

We call this sequence a free resolution of

cokerpAq � Kp{ImpAq.
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What is a resolution? (Commutative Algebra Version)

Let A be a p � q matrix with entries in the polynomial ring S.

Problem: Solve the system of S-linear equations AX � 0.

Methodology: Consider A as a map between free modules

Sp A
ÐÝ Sq

so that
the solutions we seek are elements of kerpAq,
a complete set of generators for kerpAq gives a complete
set of solutions.
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What is a resolution? (Commutative Algebra Version)

Snag: It may be the case that any complete set of generators
for kerpAq has relations between its elements.

Workaround: Suppose that there are n generators for kerpAq
and consider

Sp A
ÐÝ Sq X

ÐÝ Sn,

where a basis element of Sn is sent to a generator of kerpAq.

We have encoded the relations between the generators of
kerpAq in the S-module homomorphism X .
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What is a resolution? (Commutative Algebra Version)

If we iterate this process and take care to choose the smallest
number of generators necessary at each stage we produce a
minimal free resolution of cokerpAq � Sp{ImpAq.

Sp A
ÐÝ Sq X

ÐÝ Sn � � �
D
ÐÝ Sr Ð 0

Terminology: The ranks pp,q,n, � � � , rq of the free modules in
a minimal free resolution are called the Betti numbers of the
S-module cokerpAq.
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Minimal resolutions of S{M

Example: For the ideal M � pxy , yz, xzq, the module S{M has
the following isomorphic versions of its minimal resolution.

S
r xy yz xz s
ÐÝÝÝÝÝÝÝ

B1
S3

�
z 0
�x x
0 �y

�
ÐÝÝÝÝÝÝ

B2
S2 Ð 0

and

S
r xy yz xz s
ÐÝÝÝÝÝÝÝ

B1
S3

�
z z
�x 0
0 �y

�
ÐÝÝÝÝÝÝ

B12

S2 Ð 0

Open Problem (reformulated): Read the data of minimal
resolutions from a combinatorial object.
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Homology of intervals in the LCM-lattice

Theorem [Gasharov, Peeva, and Welker, 1998]
Let I be a monomial ideal in S. The Betti numbers of S{I are
given by the K-vectorspace dimensions of the homology groups
of spaces associated to open intervals in the LCM-lattice.

Definition (intuitive)
Homology is an algebraic measurement of the holes that exist
in a topological space. For our purposes, homology is
calculated by encoding topological data into an exact sequence
of vector spaces over K.
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An LCM-lattice which supports minimal resolutions

The LCM-lattice of M � pxy , yz, xzq

1

xy yz xz

xyz

The Betti numbers for R{M are p1,3,2q.
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Creating a resolution from a poset

Construction:
Monomial

Homology data
LI ù t∆mumPLI

ù DpLIq ù FI

LCM Topological Sequence of Sequence of
lattice Spaces Vector Spaces Free Modules

Theorem [C, 2010]: The sequence FI is the minimal free
resolution for a wide class of monomial ideals.

Goal: For ideals whose LCM-lattice does not submit to this
process, apply the construction to another appropriate poset.
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Rigidity (with S. Mapes)

Definition [Miller and Peeva]: A monomial ideal is rigid if
there exists a unique choice of S-basis for every free module in
its minimal resolution. Furthermore, such a choice results in a
unique representation for the monomial maps in the resolution.

Theorem [C and Mapes]: Rigidity is detectable using
properties of the LCM-lattice.

Non-Example: The ideal M � pxy , yz, xzq is not rigid, since we
found two versions of its minimal free resolution.
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A rigid LCM-lattice

Example: The LCM-lattice of N has Hasse diagram

1

ab bc cd de ef

abc bcd cde def abde abef bcef

abcd bcde cdef abdef abcef

abcde bcdef

abcdef
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N � pab,bc, cd ,de,ef q is rigid

The minimal resolution of S{N is

S

�
ab bc cd de ef

�

ÐÝÝÝÝÝÝÝÝÝÝÝÝ

B1
S5

�
������

�c 0 0 0 �de �ef 0
a �d 0 0 0 0 �ef
0 b �e 0 0 0 0
0 0 c �f ab 0 0
0 0 0 d 0 ab bc

�
������

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ

B2
S7

�
����������

�de ef 0 0
�ae 0 0 �ef
�ab 0 0 �bf

0 0 �ab �bc
c 0 �f 0
0 �c d 0
0 a 0 d

�
����������

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ

B3
S5

�
����

�f
�d
�c
a

�
����

ÐÝÝÝÝÝÝ

B4
S Ð 0.

The Betti numbers of S{N are p1,5,7,4,1q.
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A space containing too much information

Example: For the ideal N, data from the monomial abcde in
the LCM-lattice LN produces the space ∆abcde.

abcd
bcde

ab

cd

de
bc

abde
abc

bcd
cde
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Pruning a poset

Process for pruning
Prune a monomial m from the LCM-lattice when the associated
space ∆m has no homology. Write PpLIq for the poset
consisting only of monomials which remain after pruning.

Lemma [C and Mapes]
Let I be a monomial ideal. Then there exists an isomorphism in
homology between the open intervals in the LCM-lattice LI and
the open intervals in the pruned LCM-lattice PpLIq.
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Pruning a poset

Example: For the ideal N, data from the monomial abcde in
the pruned LCM-lattice PpLNq produces the space ∆abcde.

ab

cd

de bc

abde abc

bcdcde
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Pruning our rigid example

Example: The pruned LCM-lattice PpLNq has Hasse diagram

1

ab bc cd de ef

abc bcd cde def abde abef bcef

abdef abcefabcde bcdef

abcdef
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Main result

Theorem [C and Mapes]
The minimal free resolution of a rigid monomial ideal I is
supported on the pruned LCM-lattice PpLIq.
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What questions can resolutions answer?

Do 7 sufficiently general points in P3 lie on a cubic?
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