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Note. In this document, we use the symbol ¬ as the negation symbol. Thus ¬p means “not
p.”

There are four basic proof techniques to prove p =⇒ q, where p is the hypothesis (or set of
hypotheses) and q is the result.

1. Direct proof

2. Contrapositive

3. Contradiction

4. Mathematical Induction

What follows are some simple examples of proofs. You very likely saw these in MA395:
Discrete Methods.

1 Direct Proof

Direct proofs use the hypothesis (or hypotheses), definitions, and/or previously proven results
(theorems, etc.) to reach the result.

Theorem 1.1. If m ∈ Z is even, then m2 is even.
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Proof. Suppose m ∈ Z is even. By definition of an even integer, there exists
n ∈ Z such that

m = 2n.

Thus we get
m2 = (2n)2 = 4n2 = 2(2n2)

and we have m2 is also even.

The following is an example of a direct proof using cases.

Theorem 1.2. If q is not divisible by 3, then q2 ≡ 1 (mod 3).

Proof. If 3 - q, we know q ≡ 1 (mod 3) or q ≡ 2 (mod 3).

Case 1: q ≡ 1 (mod 3). By definition, q = 3k + 1 for some k ∈ Z. Thus

q2 = (3k + 1)2 = 9k2 + 6k + 1

= 3(3k2 + 2k) + 1

and we have q2 ≡ 1 (mod 3).

Case 2: q ≡ 2 (mod 3). By definition, q = 3k + 2 for some k ∈ Z. Thus

q2 = (3k + 2)2 = 9k2 + 12k + 4

= 9k2 + 12k + 3 + 1

= 3(3k2 + 4k + 1) + 1

and in this case we again have q2 ≡ 1 (mod 3).

In either case q2 ≡ 1 (mod 3) so the result is proven.

2 Contrapositive

Since p =⇒ q is logically equivavlent to ¬q =⇒ ¬p, we can prove ¬q =⇒ ¬p. It is good form
to alert the reader at the beginning that the proof is going to be done by contrapositive.

Theorem 2.1. If q2 is divisible by 3, so is q.
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Proof. We will prove the contrapositive; i.e., we will prove if q is not divisible
by 3, then q2 is not divisible by 3.

By Theorem 1.2, we know that if q is not divisible by 3, then q2 ≡ 1 (mod 3).
Thus q2 is not divisible by 3.

3 Contradiction

A proof by contradiction is considered an indirect proof. We assume p ∧ ¬q and come to
some sort of contradiction.

A proof by contradiction usually has “suppose not” or words in the beginning to alert the
reader it is a proof by contradiction.

Theorem 3.1. Prove
√

3 is irrational.

Proof. Suppose not; i.e., suppose
√

3 ∈ Q. Then ∃ m,n ∈ Z with m and n

relatively prime and
√

3 =
m

n
. Then 3 =

m2

n2
, or 3n2 = m2.

Thus m2 is divisible by 3 so by Theorem 2.1, m is also. By definition, m = 3k
for some k ∈ Z. Hence m2 = 9k2 = 3n2 and so 3k2 = n2. Thus n2 is divisible
by 3 and again by Theorem 2.1, n is also divisible by 3. But m, n are relatively
prime, a contradiction.

Thus
√

3 /∈ Q.

4 Mathematical Induction

Mathematical Induction is a method of proof commonly used for statements involving N,
subsets of N such as odd natural numbers, Z, etc. Below we only state the basic method of
induction. It can be modified to prove a statement for any n ≥ N0, where N0 ∈ Z.
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Theorem 4.1 (Mathematical Induction). Let P (n) be a statement for each
n ∈ N. Suppose

1. P (1) is true

2. If P (k) is true, then P (k + 1) is true. The assumption that P (k) true is
called the induction hypothesis.

Then P (n) is true for all n ∈ N.

The theorem uses the Well-ordering Principle (or axiom):

Every non-empty subset of N has a smallest element.

What about a largest element? Does Z follow the well-ordering principle? What about the
set { 1

n
: n ∈ N}?

Proof of Mathematical Induction. Proof by contradiction; i.e., suppose ∃n ∈ N
such that P (n) is false.

Let A = {n ∈ N | P (n) is false}. By supposition, A is nonempty. By the
Well Ordering Principle, A has a smallest element; call it m. Since P (1) is
true, 1 /∈ A and so we know m > 1. We also know by definition of A that
P (k) = P (m − 1), with k = m − 1 ∈ N is true. But we know if P (k) is true
then P (k + 1) = P (m) is true, which is a contradiction of m ∈ A.

Thus P (n) is true ∀n

Mathematical Induction is used to prove many things like the Binomial Theorem and equa-

tions such as 1 + 2 + · · · + n =
n(n + 1)

2
. As in other proof methods, one should alert the

reader at the beginning of the proof that this method is being used.

It is a common mistake to check a few numbers and assume that the pattern holds for all
others. But it actually must be proven, and Mathematical Induction is a way to prove things
for all natural numbers.

Fermat (1601-1655) conjectured 22n +1 is prime ∀n. It was known to be true for n = 1, 2, 3, 4.

Many years later, Euler (1707-1783) found the conjecture to be false for n = 5: 225 + 1 =
641(6,700,417).
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Theorem 4.2. For any n ∈ N, 64 is a factor of 32n+2 − 8n− 9.

Proof. Proof by Mathematical Induction.

For the n = 1 case, we see that 32n+2 − 8n − 9 = 34 − 8 − 9 = 81 − 17 = 64.
Thus P (1) is true.

Now suppose
32n+2 − 8n− 9 ≡ 0 (mod 64). (1)

We need to show that 32(n+1)+2 − 8(n + 1)− 9 ≡ 0 (mod 64).

We have

32(n+1)+2 − 8(n + 1)− 9 = 32n+2+2 − 8n− 9 (2)

= (32n+2)32 − 8k − 17 (3)

= (32n+2)9− 8k − 17 (4)

By the induction hypothesis (1), there exists some m ∈ N such that
32n+2 − 8n − 9 = 64m. Thus 32k+2 = 64m + 8k + 9 and putting this into (4)
we have

32(n+1)+2 − 8(n + 1)− 9 = (64m + 8k + 9)9− 8k − 17

= 64 · 9m + 72k + 81− 8k − 17

= 64 · 9m + 64k + 64

= 64(9m + k + 1).

Hence 32(n+1)+2 − 8(n + 1)− 9 is divisible by 64. Thus P (k + 1) is true, so by
Mathematical Induction, P (n) is true ∀n ∈ N.
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