Basic Proof Examples

Lisa Oberbroeckling Loyola University Maryland

Fall 2015

Note. In this document, we use the symbol \neg as the negation symbol. Thus $\neg p$ means "not p."

There are four basic proof techniques to prove $p \Longrightarrow q$, where p is the hypothesis (or set of hypotheses) and q is the result.

- 1. Direct proof
- 2. Contrapositive
- 3. Contradiction
- 4. Mathematical Induction

What follows are some simple examples of proofs. You very likely saw these in MA395: Discrete Methods.

1 Direct Proof

Direct proofs use the hypothesis (or hypotheses), definitions, and/or previously proven results (theorems, etc.) to reach the result.

Theorem 1.1. If $m \in \mathbb{Z}$ is even, then m^2 is even.

Proof. Suppose $m \in \mathbb{Z}$ is even. By definition of an even integer, there exists $n \in \mathbb{Z}$ such that

m = 2n.

Thus we get

$$m^2 = (2n)^2 = 4n^2 = 2(2n^2)$$

and we have m^2 is also even.

The following is an example of a direct proof using cases.

Theorem 1.2. If q is not divisible by 3, then $q^2 \equiv 1 \pmod{3}$.

Proof. If $3 \nmid q$, we know $q \equiv 1 \pmod{3}$ or $q \equiv 2 \pmod{3}$.

Case 1: $q \equiv 1 \pmod{3}$. By definition, q = 3k + 1 for some $k \in \mathbb{Z}$. Thus

$$q^{2} = (3k + 1)^{2} = 9k^{2} + 6k + 1$$
$$= 3(3k^{2} + 2k) + 1$$

and we have $q^2 \equiv 1 \pmod{3}$.

Case 2: $q \equiv 2 \pmod{3}$. By definition, q = 3k + 2 for some $k \in \mathbb{Z}$. Thus

$$q^{2} = (3k + 2)^{2} = 9k^{2} + 12k + 4$$
$$= 9k^{2} + 12k + 3 + 1$$
$$= 3(3k^{2} + 4k + 1) + 1$$

and in this case we again have $q^2 \equiv 1 \pmod{3}$.

In either case $q^2 \equiv 1 \pmod{3}$ so the result is proven.

2 Contrapositive

Since $p \Longrightarrow q$ is logically equivalent to $\neg q \Longrightarrow \neg p$, we can prove $\neg q \Longrightarrow \neg p$. It is good form to alert the reader at the beginning that the proof is going to be done by contrapositive.

Theorem 2.1. If q^2 is divisible by 3, so is q.

٦

Proof. We will prove the contrapositive; i.e., we will prove if q is not divisible by 3, then q^2 is not divisible by 3.

By Theorem 1.2, we know that if q is not divisible by 3, then $q^2 \equiv 1 \pmod{3}$. Thus q^2 is not divisible by 3.

3 Contradiction

A proof by contradiction is considered an indirect proof. We assume $p \wedge \neg q$ and come to some sort of contradiction.

A proof by contradiction usually has "suppose not" or words in the beginning to alert the reader it is a proof by contradiction.

Theorem 3.1. Prove $\sqrt{3}$ is irrational.

Proof. Suppose not; i.e., suppose $\sqrt{3} \in \mathbb{Q}$. Then $\exists m, n \in \mathbb{Z}$ with m and n relatively prime and $\sqrt{3} = \frac{m}{n}$. Then $3 = \frac{m^2}{n^2}$, or $3n^2 = m^2$.

Thus m^2 is divisible by 3 so by Theorem 2.1, m is also. By definition, m = 3k for some $k \in \mathbb{Z}$. Hence $m^2 = 9k^2 = 3n^2$ and so $3k^2 = n^2$. Thus n^2 is divisible by 3 and again by Theorem 2.1, n is also divisible by 3. But m, n are relatively prime, a contradiction.

Thus $\sqrt{3} \notin \mathbb{Q}$.

4 Mathematical Induction

Mathematical Induction is a method of proof commonly used for statements involving \mathbb{N} , subsets of \mathbb{N} such as odd natural numbers, \mathbb{Z} , etc. Below we only state the basic method of induction. It can be modified to prove a statement for any $n \geq N_0$, where $N_0 \in \mathbb{Z}$.

Theorem 4.1 (Mathematical Induction). Let P(n) be a statement for each $n \in \mathbb{N}$. Suppose

- 1. P(1) is true
- 2. If P(k) is true, then P(k+1) is true. The assumption that P(k) true is called the induction hypothesis.

Then P(n) is true for all $n \in \mathbb{N}$.

The theorem uses the **Well-ordering Principle** (or axiom):

Every *non-empty* subset of \mathbb{N} has a smallest element.

What about a largest element? Does \mathbb{Z} follow the well-ordering principle? What about the set $\{\frac{1}{n} : n \in \mathbb{N}\}$?

Proof of Mathematical Induction. Proof by contradiction; i.e., suppose $\exists n \in \mathbb{N}$ such that P(n) is false.

Let $A = \{n \in \mathbb{N} \mid P(n) \text{ is false}\}$. By supposition, A is nonempty. By the Well Ordering Principle, A has a smallest element; call it m. Since P(1) is true, $1 \notin A$ and so we know m > 1. We also know by definition of A that P(k) = P(m-1), with $k = m - 1 \in \mathbb{N}$ is true. But we know if P(k) is true then P(k+1) = P(m) is true, which is a contradiction of $m \in A$.

Thus P(n) is true $\forall n$

Mathematical Induction is used to prove many things like the Binomial Theorem and equations such as $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. As in other proof methods, one should alert the reader at the beginning of the proof that this method is being used.

It is a common mistake to check a few numbers and assume that the pattern holds for all others. But it actually must be proven, and Mathematical Induction is a way to prove things for all natural numbers.

Fermat (1601-1655) conjectured $2^{2^n} + 1$ is prime $\forall n$. It was known to be true for n = 1, 2, 3, 4.

Many years later, Euler (1707-1783) found the conjecture to be false for n = 5: $2^{2^5} + 1 = 641(6,700,417)$.

Theorem 4.2. For any $n \in \mathbb{N}$, 64 is a factor of $3^{2n+2} - 8n - 9$.

Proof. Proof by Mathematical Induction.

For the n = 1 case, we see that $3^{2n+2} - 8n - 9 = 3^4 - 8 - 9 = 81 - 17 = 64$. Thus P(1) is true.

Now suppose

$$3^{2n+2} - 8n - 9 \equiv 0 \pmod{64}.$$
 (1)

We need to show that $3^{2(n+1)+2} - 8(n+1) - 9 \equiv 0 \pmod{64}$.

We have

$$3^{2(n+1)+2} - 8(n+1) - 9 = 3^{2n+2+2} - 8n - 9$$
⁽²⁾

$$= (3^{2n+2})3^2 - 8k - 17 \tag{3}$$

$$= (3^{2n+2})9 - 8k - 17 \tag{4}$$

By the induction hypothesis (1), there exists some $m \in \mathbb{N}$ such that $3^{2n+2} - 8n - 9 = 64m$. Thus $3^{2k+2} = 64m + 8k + 9$ and putting this into (4) we have

$$3^{2(n+1)+2} - 8(n+1) - 9 = (64m + 8k + 9)9 - 8k - 17$$

= 64 \cdot 9m + 72k + 81 - 8k - 17
= 64 \cdot 9m + 64k + 64
= 64(9m + k + 1).

Hence $3^{2(n+1)+2} - 8(n+1) - 9$ is divisible by 64. Thus P(k+1) is true, so by Mathematical Induction, P(n) is true $\forall n \in \mathbb{N}$.