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Abstract The coupling of cell-centered finite volume method with primal discontin-

uous Galerkin method is introduced in this paper for elliptic problems. Convergence

of the method with respect to the mesh size is proved. Numerical examples confirm

the theoretical rates of convergence. Advantages of the coupled scheme are shown for

problems with discontinuous coefficients or anisotropic diffusion matrix.
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1 Introduction

This paper presents a multinumerics scheme for solving the elliptic problem, that com-

bines the primal Discontinuous Galerkin (DG) and cell-centered Finite Volume (FV)

methods. Applications of this work are of interest for modeling fluid flow in porous

media. Our proposed scheme takes advantage of both the accuracy of DG in regions of

interest, such as regions containing local features (shales, pinch-outs) and the efficiency

of FV in the rest of the domain.

Over the last ten years, primal discontinuous Galerkin methods have been shown

to be accurate for flow problems in heterogeneous porous media [24,23]. The fact

that that DG methods are locally conservative makes them an attractive scheme for

simulating more complicated flow and transport problems, such as multiphase flows

[2,21,5,15,17]. The flexibility of DG methods allows for general unstructured meshes

and discontinuous coefficients. In addition, accuracy can be increased by an easy use

of local mesh refinement and high order polynomials.
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Another locally conservative method is the class of finite volume methods. In addi-

tion to the local mass conservation property, FV methods are robust schemes that can

be used on very general geometries with structured or unstructured meshes. Vertex-

centered FV methods on unstructured meshes are analyzed in [1,4,3]. Cell-centered

FV methods on triangular or Voronoi meshes are studied for instance in [9,8,14,25,

10]. Applications of FV methods to multiphase flow in porous media are addressed

in [7,13,11,12]. These methods produce monotone discretizations, handle well the dis-

continuous coefficients, and are computationally very efficient. Unfortunately, the con-

vergence of the cell-centered FV methods is guaranteed only on specially constructed

grids (Voronoi meshes) and for problems with no mixed second derivatives. Local re-

finement is very difficult on Voronoi grids and usually cannot be done dynamically

because of the global nature of the Voronoi grids. Modeling real flows in porous media

with complicated geological features like faults, disappearing layers(pinch-outs), etc.,

and multiple complex wells essentially transfer the difficulty to the grid generation.

Coupling of FV and DG discretizations can considerably alleviate the requirement for

the grid with an acceptable increase of the computational cost. Moreover, the accuracy

of the computed solution also could be improved. We show in Example 2 how DG can

be used around the pinch-outs where constructing a Voronoi grid aligned with the lay-

ers is very difficult. Another application is in the areas where the principal directions of

the permeability is not aligned with the grid as shown in Example 3. Using only FV in

such application will produce a wrong solution. Both examples demonstrate the use of

DG for local refinement. Cell-centered FV methods are currently widely used in most

of the production reservoir simulators. Coupling of FV and DG methods produces a

more flexible discretization with improved approximation properties.

An outline of the paper is now given. In the following section, the numerical method

is formulated for a general elliptic problem. Then, a priori error estimates are derived

in Section 3. Numerical examples are shown in Section 4. Conclusions follow.

2 Model Problem And Scheme

Let Ω ∈ Rd, d = 2, 3, be a bounded polygonal domain subdivided into non overlapping

subdomains ΩiF and ΩiD and let ΩF = ∪iΩiF and ΩD = ∪iΩiD. The numerical method

discussed in this paper uses a finite volume method on ΩF and a discontinuous Galerkin

method on ΩD. Let f ∈ L2(Ω) and g ∈ H1/2(∂Ω). The solution u of the elliptic

problem satisfies

−∇ · (K∇u) = f, in Ω, (1)

u = g, on ∂Ω. (2)

The coefficient K is bounded above and below by positive constants k1 and k0 respec-

tively. Let EhD (resp. EhF ) be a subdivision of ΩD (resp. ΩF ), made of cells V (Voronoi

cells in ΩF and either triangles/tetrahedra/hexahedra or Voronoi cells in ΩD). We

also denote by hF (resp. hD) the maximum diameter over all cells in ΩF (resp. ΩD)

and we let h = max(hF , hD). We assume that the meshes match at the interface

ΓDF = ∂ΩD ∩ ∂ΩF .

The definition of the mesh EhF requires further notation. We assume that EhF is an

admissible finite volume mesh, in the following sense:
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1. There is a family of nodes {xV }V ∈EhF such that xV ∈ V and if an edge γ is such

that γ = ∂V ∩∂W with W 6= V , it is assumed that xW 6= xV and that the straight

line going through xV and xW is orthogonal to γ.

2. For any boundary edge γ = ∂V ∩ ∂Ω with V ∈ EhF , it is assumed that xV /∈
γ. However this condition can be relaxed (see Remark 1 in Section 3). Let yγ
be the (non-empty) intersection between the straight line going through xV and

orthogonal to γ.

We denote by Γh,IF the set of edges that belong to the interior of ΩF and by Γh,∂F the

set of boundary edges that belong to ∂ΩF ∩∂Ω. Similarly, the sets of edges that belong

to the interior of ΩD and boundary edges that belong to ∂ΩD ∩ ∂Ω are denoted by

Γh,ID and Γh,∂D respectively. We also define

ΓhF = Γh,IF ∪ Γh,∂F , ΓhD = Γh,ID ∪ Γh,∂D .

There remains the set of edges that belong to the interface ΓDF ; this particular set is

denoted by ΓhDF .

We now define a parameter dγ that is associated to each edge in the FV mesh. Let

V and W be two cells in the FV region such that γ = ∂V ∩∂W is an interior edge. We

define the parameter dγ to be the Euclidean distance between the nodes xV and xW .

dγ = d(xV , xW ).

If the edge γ is a boundary edge (i.e. belongs to ∂V ∩ ∂Ω) the parameter dγ is the

distance between the node xV and the edge γ.

dγ = d(xV , γ) = d(xV , yγ).

Next, assume that an edge γ is the intersection of a FV cell V and a DG cell W .

The parameter dγ is defined to be the distance between the node xV and the point

yγ , which is (as in the boundary case) the intersection between the straight line going

through xV and orthogonal to γ. Here, we have made the assumption that xV does

not lie on the interface γ. Assume there is some θ > 0 such that

∀γ ∈ Γh,IF , γ = ∂V ∩ ∂W, dγ ≥ θmax(hV , hW ),

∀γ ∈ Γh,∂F , γ = ∂V ∩ ∂Ω, dγ ≥ θhV ,

∀γ ∈ ΓhDF , γ = ∂V ∩ ∂W, V ∈ EhF , W ∈ EhD, dγ ≥ θhV .

Finally, we define the harmonic average of the diffusion coefficient:

∀γ ∈ Γh,IF , γ = ∂V ∩ ∂W, Kγ = dγ

˛̨̨̨Z xW

xV

ds

K(s)

˛̨̨̨−1

,

∀γ ∈ Γh,∂F , γ = ∂V ∩ ∂Ω, Kγ = dγ

˛̨̨̨Z yγ

xV

ds

K(s)

˛̨̨̨−1

,

∀γ ∈ ΓhDF , γ = ∂V ∩ ∂W, V ∈ EhF , W ∈ EhD, Kγ = dγ

˛̨̨̨Z yγ

xV

ds

K(s)

˛̨̨̨−1

.

It is easy to see that Kγ is also bounded above and below by k1 and k0 respectively.
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We denote by |γ| the length of an edge γ. The finite dimensional space consists of

piecewise polynomials of degree less than or equal to r in the DG region and of degree

equal to zero in the FV region.

Xh = {v ∈ L2(Ω) : v|V ∈ Pr(V ) ∀V ∈ EhD, v|V ∈ P0(V ) ∀V ∈ EhF }.

Define the jump of a function in Xh. For any edge γ we fix a unit normal vector nγ to

γ. We assume that if γ is a boundary edge (belongs to ∂Ω), then nγ points outward

of ∂Ω. If γ belongs to the interface ΓhDF , then we assume that nγ points from the DG

region into the FV region. Let us denote by V and W the mesh elements so that the

vector nγ points from ∂V into ∂W . We define the jump of a function u ∈ Xh.

γ ∈ Γh,IF , [u]|γ = u(xV )− u(xW ),

γ ∈ Γh,ID , [u]|γ = u|V − u|W ,

γ ∈ ΓhDF , [u]|γ = u|ΩD (yγ)− u|ΩF (xW ),

γ ∈ Γh,∂F , [u]|γ = u(xV ),

γ ∈ Γh,∂D , [u]|γ = u|V .

We remark that the quantity [u]|γ is a number except for the edges γ ∈ ΓhD. The DG

method requires additional notation. Let {u} denote the average of a function u ∈ Xh.

γ ∈ Γh,ID , γ = ∂V ∩ ∂W, u|γ = 0.5(u|V + u|W ),

γ ∈ Γh,∂D , γ ∈ ∂V, {u}|γ = u.

Let σ > 0 denote the penalty parameter and ε ∈ {−1, 1} be the symmetrization

parameter. For a given edge γ shared by two mesh elements V and W , let hγ =

max(diam(V ), diam(W )). The DG bilinear form is for all u, v ∈ Xh

aD(u, v) =
X
V ∈EhD

Z
V
K∇u · ∇v −

X
γ∈ΓhD

Z
γ
{K∇u · nγ}[v]

+ε
X
γ∈ΓhD

Z
γ
{K∇v · nγ}[u] +

X
γ∈ΓhD

σ

hγ

Z
γ
[u][v]. (3)

The cell-centered finite volume method is defined by the following bilinear form for all

u, v ∈ Xh

aF (u, v) =
X
γ∈ΓhF

|γ|
dγ
Kγ [u][v]. (4)

Our scheme uses the overall bilinear form for all u, v ∈ Xh

a(u, v) = aD(u, v) + aF (u, v) + aDF (u, v), (5)

where aDF is the coupling form at the interface ΓhFD:

aDF (u, v) =
X

γ∈ΓhFD

|γ|
dγ
Kγ [u][v]. (6)
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The source functions and boundary conditions are taken into account in the form

∀v ∈ Xh, `(v) =

Z
Ω
fv + ε

X
γ∈Γh,∂D

Z
γ
(K∇v · nγ +

σ

hγ
v)g +

X
γ∈Γh,∂F

Kγ
|γ|
dγ
g(yγ)v.

(7)

The numerical scheme is: to find U ∈ Xh satisfying

∀v ∈ Xh, a(U, v) = `(v) (8)

We next define some norms, that naturally arise from the bilinear forms above:

‖v‖DG =

0@ X
V ∈EhD

‖K1/2∇v‖2L2(V ) +
X
γ∈ΓhD

h
−1/2
γ ‖[v]‖2L2(γ)

1A1/2

, (9)

‖v‖FV =

0@ X
γ∈ΓhF

|γ|
dγ
Kγ [v]2

1A1/2

, (10)

‖v‖E =

0@‖v‖2DG + ‖v‖2FV +
X

γ∈ΓhFD

Kγ
dγ

[v]2

1A1/2

. (11)

We now give some important properties of the bilinear forms.

Lemma 1 There exist α, β positive constants independent of h such that

∀v ∈ Xh, aD(v, v) ≥ α‖v‖2DG, (12)

∀v ∈ Xh, aF (v, v) = ‖v‖2FV , (13)

∀v ∈ Xh, a(v, v) ≥ β‖v‖2E . (14)

Proof Inequality (12) is well known and requires the penalty parameter σ to be large

enough if ε = −1 [22]. Inequality (13) is trivial and the third inequality is a straight-

forward consequence of the first two and the definition (5).

Lemma 2 There exists a unique solution U ∈ Xh satisfying (8).

Proof It suffices to show uniqueness of U satisfying (8) with f = g = 0. Take v = U in

(8), and use coercivity of a. This implies that ‖U‖E = 0 and thus U = 0 in Xh.

3 Error Analysis

For simplicity proofs are given in the case where there are only one DG region and one

FV region, but the proofs for the general case are similar. For each edge γ we define a

subdomain Vγ as follows. Assume that γ ∈ Γh,IF with γ = ∂V ∩ ∂W . Define

VW,γ = {txV + (1− t)x, x ∈ γ, t ∈ [0, 1]},

and let

Vγ = VW,γ ∩ VV,γ .

Assume now that γ ∈ Γh,∂F with γ ⊂ ∂W , then Vγ = VW,γ . Finally if γ ∈ ΓhDF with

γ = ∂V ∩ ∂W , and W ∈ EhF , then Vγ = VW,γ .
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Lemma 3 Define the residuals for any u ∈ H2(Ω).

γ ∈ Γh,IF Rγ(u) = −|γ|
dγ
Kγ [u]−

Z
γ
K∇u · nγ , (15)

γ ∈ Γh,∂F , γ = ∂V ∩ ∂Ω Rγ(u) = −|γ|
dγ
Kγ(u(xV )− g(yγ))−

Z
γ
K∇u · nγ , (16)

∀γ ∈ ΓhDF , Rγ(u) = −K∇u · nγ −
Kγ
dγ

[u]. (17)

Let H(u) denote the Hessian matrix of u. Assume K is a positive constant. Then, there

exists a constant C independent of h and u, but dependent on θ, such that

γ ∈ ΓhF , |Rγ(u)|2 ≤ C h
2
F |γ|
dγ

Z
Vγ
|H(u)|2, (18)

γ ∈ ΓhDF ,
„Z

γ
|Rγ(u)|

«2

≤ C h
2
F |γ|
dγ

Z
Vγ
|H(u)|2. (19)

Proof Inequalities (18) and (19) can be found in [6].

The following result shows that there is a consistency error only due to the FV dis-

cretization. In the DG region, there is no consistency error.

Lemma 4 Let u ∈ H1(Ω)∩H2(Eh) be the solution to problem (1)-(2). Then u satisfies

∀v ∈ Xh, a(u, v) = `(v)−
X
γ∈ΓhF

Rγ(u)[v]−
X

γ∈ΓhDF

[v]

Z
γ
Rγ(u)

−
X

γ∈ΓhDF

Z
γ
Rγ(u)(v|ΩD − v|ΩD (yγ)) +

X
γ∈ΓhDF

|γ|Kγ
dγ

[u]

„
v|ΩD (yγ)− |γ|−1

Z
γ
v|ΩD

«
.

(20)

Proof Let V ∈ EhF and let v ∈ Xh such that v|V = 1 and v = 0 elsewhere. Denote by

nV the outward unit normal to V . Multiply (1) by v and integrate on V by parts:

−
Z
∂V

K∇u · nV v =

Z
V
fv,

or

−
X
γ∈∂V

Z
γ
K∇u · nV v =

Z
V
fv. (21)

Summing (21) over all FV cells, and using the residual definitions, we obtain for all

v ∈ Xh:

aF (u, v) +
X

γ∈ΓhDF

Z
γ
K∇u · nγvFV +

X
γ∈ΓhF

Rγ(u)[v]−
X

γ∈Γh,∂F

|γ|
dγ
Kγg(yγ)v =

Z
ΩF

fv.

(22)

For readability, we denote by vDG the restriction of v to the DG region and by vFV
its restriction to the FV region. Next, we consider V ∈ EhD, multiply (1) by v ∈ Xh

and integrate by parts:Z
V
K∇u · ∇v −

Z
∂V

K∇u · nV v =

Z
V
fv.
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Sum over all V in the DG region, add the stabilization terms to obtain

aD(u, v)−
X

γ∈ΓhDF

Z
γ
K∇u ·nγvDG =

Z
ΩD

fv + ε
X

γ∈Γh,∂D

Z
γ
(K∇v ·nγ +

σ

hγ
v)g. (23)

We now add (22) and (23):

aF (u, v) + aD(u, v) + T = `(v)−
X
γ∈ΓhF

Rγ(u)[v],

where T corresponds to the terms involving integrals on the interface ΓDF . We can

write using the regularity of the solution u (namely the fact that u ∈ H2(Ω)):

T = −
X

γ∈ΓhDF

Z
γ
K∇u·nγ(vDG−vFV ) = −

X
γ∈ΓhDF

Z
γ
K∇u·nγ(vDG−vDG(yγ))−

X
γ∈ΓhDF

[v]

Z
γ
K∇u·nγ .

Using the definition of the residual in Lemma 3, we obtain

T =
X

γ∈ΓhDF

Z
γ
(Rγ(u) +

Kγ
dγ

[u])(vDG − vDG(yγ)) +
X

γ∈ΓhDF

[v]

Z
γ
(Rγ(u) +

Kγ
dγ

[u]),

or

T = aDF (u, v)+
X

γ∈ΓhDF

[v]

Z
γ
Rγ(u)+

X
γ∈ΓhDF

Z
γ
Rγ(u)(vDG−vDG(yγ))−

X
γ∈ΓhDF

|γ|Kγ
dγ

[u]E(vDG),

with

E(vDG) = vDG(yγ)− 1

|γ|

Z
γ
vDG.

Thus we can conclude.

Theorem 1 Assume that u ∈ H2(Ω) and that u|ΩD ∈ H
r+1(EhD) for r ≥ 1. Under

the assumptions of Lemma 3, there exists a constant C independent of hD and hF such

that

‖U − u‖E ≤ C(hrD + hF ).

Proof We can write

U − u = χ− ξ, χ = U − ũ, ξ = u− ũ.

The function ũ ∈ Xh is chosen so that

∀V ∈ EhF , ũ|V = u(xV ). (24)

On the DG region ũ is assumed to satisfy the usual approximation properties. Using

the definition of the scheme (8) and Lemma 4, we obtain an error equation:

a(χ, χ) = a(ξ, χ)+
X
γ∈ΓhF

Rγ(u)[χ]+
X

γ∈ΓhDF

[χ]

Z
γ
Rγ(u)+

X
γ∈ΓhDF

Z
γ
Rγ(u)(χ|ΩD−χ|ΩD (yγ))

+
X

γ∈ΓhDF

|γ|Kγ
dγ

[u]

„
χ|ΩD (yγ)− |γ|−1

Z
γ
χ|ΩD

«
.
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Let us estimate the terms in the right hand side. Since ξ(xV ) = 0 for all nodes xV in

ΩF , we have

a(ξ, χ) = aD(ξ, χ) + aF (ξ, χ) + aDF (ξ, χ) = aD(ξ, χ) + aDF (ξ, χ).

We can use standard techniques to bound aD(ξ, χ). The other term reduces to

aDF (ξ, χ) =
X

γ∈ΓhDF

|γ|Kγ
dγ

[χ]ξ|ΩD (yγ).

We claim that we can choose the approximation ũ such that ξ|ΩD (yγ) = 0. In that

case we have aDF (ξ, χ) = 0. The first consistency error term is bounded as follows:

X
γ∈ΓhF

Rγ(u)[χ] ≤ 1

16

X
γ∈ΓhF

|γ|Kγ
dγ

[χ]2 + 4
X
γ∈ΓhF

dγ
|γ| (Rγ(u))2.

Using the bound (18) and denoting by H(u) the Hessian matrix of u, we have

X
γ∈ΓhF

Rγ(u)[χ] ≤ 1

16

X
γ∈ΓhF

|γ|Kγ
dγ

[χ]2 + Ch2
F

Z
ΩF

|H(u)|2.

The second consistency error term is as:

X
γ∈ΓhDF

[χ]

Z
γ
Rγ(u) ≤ 1

16

X
γ∈ΓhDF

|γ|Kγ
dγ

[χ]2 + 4
X

γ∈ΓhDF

dγ
|γ| (

Z
γ
Rγ(u))2.

which with the bound (19) gives:

X
γ∈ΓhDF

[χ]

Z
γ
Rγ(u) ≤ 1

16

X
γ∈ΓhDF

|γ|Kγ
dγ

[χ]2 + Ch2
F

Z
ΩF

|H(u)|2.

Finally we haveX
γ∈ΓhDF

Z
γ
Rγ(u)(χ|ΩD − χ|ΩD (yγ)) ≤

X
γ∈ΓhDF

Z
γ
|Rγ(u)||χ|ΩD − χ|ΩD (yγ)|.

Let us fix an edge γ ∈ ΓhDG with γ = ∂V ∩ ∂W , and V ∈ EhD. Let us denote by

η = χ|V − χ|V (yγ). Then we have by trace and inverse inequalities:

‖η‖L∞(γ) ≤ Ch
−1/2
D ‖η‖L2(γ) ≤ C‖∇η‖L2(V ).

Therefore we obtain

X
γ∈ΓhDF

Z
γ
Rγ(u)(χ|ΩD − χ|ΩD (yγ)) ≤ 1

16
‖χ‖2DG + C

X
γ∈ΓhDF

„Z
γ
|Rγ(u)|

«2

≤ 1

16
‖χ‖2DG + Ch2

F

Z
ΩF

|H(u)|2.
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The last consistency error term is bounded as follows. Fix an edge in ΓhDF such that

γ = ∂V ∩ ∂W with V ∈ EhD:

|γ|Kγ
dγ

[u]

„
χ|ΩD (yγ)− |γ|−1

Z
γ
χ|ΩD

«
≤ C‖∇χ‖L2(V )

|γ|Kγ
dγ
|[u]|.

Using the density of C1 into H2 and a Taylor expansion, we can prove that:

|[u]|γ | ≤ dγ |γ|1/2‖∇u · n‖L2(γ).

So we haveX
γ∈ΓhDF

|γ|Kγ
dγ

[u]

„
χ|ΩD (yγ)− |γ|−1

Z
γ
χ|ΩD

«
≤ 1

16
‖χ‖2DG + Ch3

F ‖∇u · n‖
2
L2(ΓhDF )

≤ 1

16
‖χ‖2DG + Ch2

F ‖u‖
2
H2(ΩF ).

We can then conclude.

Remark 1: The results of Theorem 1 are still valid if there are some nodes xV located

on boundary edges γ ∈ Γh,∂F . Let denote by Γh,0F the set of such edges. The coupled

scheme is slightly modified. The discrete space is the set Y h of functions v ∈ Xh such

that v(xV ) = 0 for all xV ∈ Γh,0F . The bilinear form aF and linear form ` become

aF (u, v) =
X

γ∈ΓhF \Γ
h,0
F

|γ|
dγ
Kγ [u][v]

`(v) =

Z
Ω
fv + ε

X
γ∈Γh,∂D

Z
γ
(K∇v · nγ +

σ

hγ
v)g +

X
γ∈Γh,∂F \Γh,0F

Kγ
|γ|
dγ
g(yγ)v.

The solution U ∈ Xh is such that U(xV ) = g(xV ) for all xV ∈ Γh,0F , and satisfies

∀v ∈ Y h, a(U, v) = `(v)

4 Numerical Examples

In the following section we present examples that verify the convergence rates for the

proposed FV-DG coupling and illustrate cases in which the coupled scheme yields a

more accurate solution.

Example 1 Convergence Study

First we consider the unit square domain Ω partitioned into two subdomains ΩD
and ΩF (see Fig. 1). The boundary conditions are chosen so that the exact solution

u(x, y) = (x2 − x)(y2 − y) and the coefficient K is equal to one.

In order to perform the convergence tests we generate five Delaunay triangulations

using the software EasyMesh developed by Bojan Niceno [16]. At each level of refine-

ment we ensure that the maximum area of each triangle decreases by a factor of 4. We

then generate the dual Voronoi mesh for each Delaunay triangulation. This technique

has been used in [14]. Fig. 1 shows an example of the mesh for the convergence test with

340 Voronoi cells. The shaded subdomain is ΩD on which the solution is approximated



10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1: Computational mesh with 340 Voronoi cells: ΩF is the white region and ΩD is the grey
region.

using the discontinuous Galerkin method and the rest of the domain is ΩFV , on which

the finite volume method is used. The DG parameters are chosen as: σ = 1, ε = 1.

Fig. 2 shows the exact solution and the numerical solution obtained on the mesh

shown in Fig. 1. We observe the expected clear distinction between the piecewise con-

stant solution on ΩF and the smoother solution on ΩD on which the solution is ap-

proximated by discontinuous quadratic polynomials.

N ||U − u||0,FV ||U − u||FV ||U − u||L2(ΩD) ||U − u||DG ||U − u||E
31 1.489 ×10−3 1.034 ×10−2 1.147 ×10−3 3.049 ×10−2 3.872 ×10−3

102 4.010 ×10−4 2.748 ×10−3 3.034 ×10−4 1.503 ×10−2 1.781 ×10−3

340 1.033 ×10−4 8.143 ×10−4 8.386×10−5 8.031 ×10−3 9.276 ×10−4

1272 2.609 ×10−5 2.722 ×10−4 2.112 ×10−5 4.039 ×10−3 4.653 ×10−4

4895 6.496 ×10−6 1.016 ×10−4 5.322 ×10−6 2.039 ×10−3 2.313 ×10−4

rate 2.00 1.40 2.00 1.00 1.00

Table 1: Numerical errors and convergence rates for DG scheme of order one coupled with FV.

N ||U − u||0,FV ||U − u||FV ||U − u||L2(ΩD) ||U − u||DG ||U − u||E
31 9.479 ×10−4 6.592 ×10−3 4.881 ×10−4 4.298 ×10−3 2.172 ×10−3

102 2.593 ×10−4 1.872 ×10−3 1.176 ×10−4 1.598 ×10−3 9.009 ×10−4

340 6.578 ×10−5 6.148 ×10−4 4.028×10−5 7.550 ×10−4 4.415 ×10−4

1272 1.744 ×10−5 2.389 ×10−4 9.198 ×10−6 4.328 ×10−4 2.397 ×10−4

4895 4.766 ×10−6 1.012 ×10−4 2.487 ×10−6 1.120 ×10−4 1.198 ×10−4

rate 1.88 1.23 1.89 1.95 1.00

Table 2: Numerical errors and convergence rates for DG scheme of order two coupled with FV.



11

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TRUE_SOL

6.00E-02
5.50E-02
5.00E-02
4.50E-02
4.00E-02
3.50E-02
3.00E-02
2.50E-02
2.00E-02
1.50E-02
1.00E-02
5.00E-03

(a) Exact Pressure

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PRESSURE

6.00E-02
5.50E-02
5.00E-02
4.50E-02
4.00E-02
3.50E-02
3.00E-02
2.50E-02
2.00E-02
1.50E-02
1.00E-02
5.00E-03

(b) Approximate Pressure

X

0
0.2

0.4
0.6

0.8
1

Y

0

0.2

0.4

0.6

0.8

1

T
R

U
E

_S
O

L

0

0.02

0.04

0.06

TRUE_SOL

6.00E-02
5.00E-02
4.00E-02
3.00E-02
2.00E-02
1.00E-02

(c) Exact Pressure

X

0
0.2

0.4
0.6

0.8
1

Y

0

0.2

0.4

0.6

0.8

1

P
R

E
S

S
U

R
E

0

0.02

0.04

0.06

PRESSURE

6.00E-02
5.00E-02
4.00E-02
3.00E-02
2.00E-02
1.00E-02

(d) Approximate Pressure

Fig. 2: Contours of exact and numerical solutions for example 1.

Tables 1 and 2 show the expected convergence rate of O
`
h
´

in the energy norm. The

error in the L2 norm for the DG solution are also given; they are O
`
h2´ as expected.

A discrete L2 error is computed for the FV region:

||U − u||0,FV =

0@ X
V ∈EhF

|V |(U(xV )− u(xV ))2

1A1/2

.

The rates for the discrete L2 errors are also O
`
h2´.

The variable N is the total number of Voronoi cells in the domain Ω. When we

increase the degree of approximation in ΩD to two, the pressure solution is more

accurate and the local convergence rate increases to two. This feature is important

because it allows for one to use the Discontinuous Galerkin method to obtain accurate

solutions on parts of the domain of interest.
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Example 2 Discontinuity in Porous Medium

In the next example we consider a square domain Ω = (0, 2)× (0, 2) with an enclosed

triangular domain (see Fig. 3 left). The diffusion coefficient K is equal to 0.01 in the

triangular subdomain and 1.0 in the rest of the domain. We impose zero Dirichlet

boundary conditions and the source function

f(x, y) = −2.0(x2 − 2x) + (y2 − 2y).

The challenge for the finite volume method in this case arises from the discontinuity
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(b) FV-DG

Fig. 3: Computational meshes in the case of triangular inclusion (grey region in left figure).
The DG region is a larger rectangular region that contains the triangular inclusion (grey region
in right figure).

in the permeability of the porous medium that changes rapidly over a small part of the

domain. We want to compare the FV solution with the FV-DG solution on the domains

shown in Fig. 3. We first solve the problem on a mesh with 1985 Voronoi cells using the

finite volume method on the mesh shown in Fig. 3(a). The solution is shown in Fig. 4

(a) and (c). It is clear the the finite volume solution captures the low permeability in

the triangular domain, however it is difficult to obtain an accurate solution as indicated

by the three-dimensional plot. Next we solve the problem by using the DG method with

parameters ε = σ = 1 and r = 2 in the rectangular shaded region that includes the

triangular region as shown in Fig. 3(b). The mesh is a combination of Voronoi cells and

triangular elements. The flexibility of DG easily allows the use of hybrid meshes, that

can capture the discontinuity interface. The solution is shown in Fig. 4 (b) and (d).

We observe that we are able to obtain a more accurate representation of the solution

in contrast to the case when the finite volume method is used throughout the domain.

This is explained partially by the fact that we have a higher order approximation in the

DG region. The FV-DG solution is obtained by solving a problem of size 6509 which

as expected is larger than the problem size from the FV solution. We note that solving

this problem using the discontinuous Galerkin method on the whole domain yields a

problem of size 13734. In this case we have shown that with prior knowledge of the

domain, we can choose carefully parts of the domain to use the DG method resulting

in an accurate solution in the areas interest. The size of the linear system we solve for

the FV-DG coupling in this example and others discussed in this paper is relatively

small compared to using the DG method throughout the domain. We believe that this

feature works well for applications to porous media flow. Fractures and pinches are
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Fig. 4: Contours of pressure solution for example 2

often areas of interest in the flow problem. Since they often occupy small portions of

the domain, the proposed coupling can lead to more accurate solutions in these areas

at a relatively low computational cost.

Example 3 Anisotropic Diffusion Problem

In the following example we consider a domain Ω = (0, 2) × (0, 2) that contains a

rectangular subdomain with an anisotropic diffusion matrix (see Fig. 5), instead of a

simple diffusion scalar. This example is motivated by a benchmark problem described

in [20]. The diffusion matrix is defined by

K = Rφ

„
1 0

0 δ

«
R−1
φ ,

where Rφ is the rotation matrix (with φ = 30 degrees) and δ = 10−3 in the shaded

triangulated region of the domain (see Fig. 5) and δ = 1 on the rest of the domain.
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We solve the problem using the discontinuous Galerkin method in the shaded region

in Fig. 5 with parameters σ = ε = 1 and r = 2. We note that other types of finite

volume methods can be used to solve problems with anisotropic diffusion coefficients for

example [18,19]. These methods are relatively more complicated to implement because

they involve the construction of a discrete gradient. In practice for the finite volume

method discussed in this paper one can align the computational grid to the principal

directions the flow. This approach is strenuous and easily gets complicated in cases

involving changes in the direction of the flow.
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Fig. 5: Computational mesh for example 3: δ = 10−3 in the triangulated grey region and δ = 1
in region partitioned into Voronoi cells.
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Fig. 6: Contours of pressure solution for example 3. Streamlines are only shown in the DG
region.

Fig. 6 shows the pressure contours obtained from the proposed FV-DG scheme. We

also plot some of the streamlines located in the DG region only. We can clearly see the

oblique flow in the rectangular subdomain due to the anisotropic diffusion tensor.
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5 Conclusions

The coupling of discontinuous Galerkin and finite volume methods seems very natural,

as both methods share several appealing features. Some may even argue that DG is

an extension of FV to high order approximation. This work presents both theoretical

and numerical results that confirm the convergence of the multi-numerics algorithm.

The resulting solution is more accurate than the finite volume solution, and is less

computationally costly than the discontinuous Galerkin solution.

References

1. R.E. Bank and D.J. Bose. Error estimates for the box method. SIAM J. Numer. Anal,
24:777–790, 1986.

2. P. Bastian and B. Riviere. Discontinuous Galerkin methods for two-phase flow in porous
media. Technical Report 2004-28, University of Heidelberg, 2004.

3. Z. Cai. On the finite volume element method. Numer. Math., 58:713–735, 1991.
4. Z. Cai, J. Mandel, and S.Mc Cormick. The finite volume element method for diffusion

equations on general triangulations. SIAM J. Numer. Anal., 28:392–402, 1991.
5. Y. Epshteyn and B. Riviere. Fully implicit discontinuous finite element methods for two-

phase flow. Applied Numerical Mathematics, 57:383–401, 2007.
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