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Abstract

This paper introduces and analyzes two models coupling of incompressible Navier-Stokes equations

with the porous media flow equations. A numerical method that uses continuous finite elements in the

incompressible flow region and discontinuous finite elements in the porous medium, is proposed. Existence

and uniqueness results under small data condition of the numerical solution are proved. Optimal a priori

error estimates are derived. Numerical examples comparing the two models are provided.

1 Introduction

There is an increasing interest in coupling incompressible flow and porous media flow. Applications of such
complex phenomena can be found in geosciences (modeling of the interaction of rivers with groundwater)
and in health sciences (modeling of blood flow and organs). In this work, we consider the coupling of the
nonlinear Navier-Stokes equations with the Darcy equations. Non-homogeneous boundary conditions are
imposed on the boundary of the porous medium. This generalizes the weak problem defined in [16] where
homogeneous boundary conditions were assumed. We also propose a numerical scheme that couples the
continuous finite element method with the Discontinuous Galerkin (DG) method. Because of legacy codes,
multinumerics approaches are attractive. In addition, one can take advantage of the benefits of the different
methods used in the subdomains. On one hand, classical finite elements are popular for computational fluid
dynamics. On the other hand, the advantages of DG methods include the flexible use of mesh adaptivity and
high order of approximation. The DG methods we consider here are called primal DG methods and they
are variations of interior penalty methods. These methods encompass the non-symmetric interior penalty
Galerkin method (NIPG) [25, 26, 20], the incomplete interior penalty Galerkin method (IIPG) [9] and the
symmetric interior penalty Galerkin method (SIPG) [29, 2]. In [16], the coupled problem is approximated
by totally discontinuous elements. In [10, 4], the coupling of Navier-Stokes with Darcy with homogeneous
boundary conditions has been analyzed by using Steklov-Poincaré operators and by using continuous finite
elements in a Robin-Robin domain decomposition approach.

Let Ω be a bounded domain in R
2, that is subdivided into two disjoint subdomains Ω1 and Ω2. Let Γ12

denote the interface between the subdomains: Γ12 = ∂Ω1 ∩ ∂Ω2. We assume that Γ12 is a polygonal line.
The flow in Ω1 is incompressible and characterized by the Navier-Stokes equations:

−∇ · (2µD(u1) − p1I) + u1 · ∇u1 = f1, in Ω1, (1)

∇ · u1 = 0, in Ω1, (2)

u1 = 0, on ∂Ω1\Γ12 = Γ1. (3)
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1 INTRODUCTION

The fluid velocity and pressure in Ω1 are denoted by u1 and p1 respectively. The coefficient µ > 0 is the fluid
viscosity, the function f1 is an external force acting on the fluid, I is the identity matrix and the matrix
D(u1) is the stress tensor:

D(u1) =
1

2
(∇u1 + ∇u1

T ). (4)

The flow in Ω2 is of Darcy type. We assume that the boundary Γ2 = ∂Ω2 \ Γ12 is the union of two disjoint
sets Γ2D and Γ2N on which Dirichlet and Neumann boundary conditions are imposed.

−∇ · K∇p2 = f2, in Ω2, (5)

−K∇p2 = u2, in Ω2, (6)

p2 = gD, on Γ2D, (7)

K∇p2 · n2 = gN, on Γ2N. (8)

Similarly, the fluid velocity and pressure in Ω2 are denoted by u2 and p2 respectively. The function f2 is an
external force acting on the fluid, the functions gD and gN are the prescribed value and flux respectively, the
vector n2 denotes the unit vector normal to Γ2 and the coefficient K is a symmetric positive definite matrix
uniformly bounded above and below. There exist constants λmin > 0 and λmax > 0 such that:

a.e. x ∈ Ω2 , λminx · x ≤ Kx · x ≤ λmaxx · x. (9)

The system of equations (1)-(8) is completed by interface conditions. There is no consensus in the scientific
communities on the choice of these interface conditions, even for the linearized case of Stokes coupled with
Darcy. We first propose to impose the the continuity of the normal component of velocity (10) and the
Beaver-Joseph-Saffman [5, 28, 21] law (11) across the interface. Let n12 be the unit normal vector to Γ12

directed from Ω1 to Ω2 and let τ 12 be the unit tangent vector on Γ12.

u1 · n12 = −K∇p2 · n12, (10)

u1 · τ 12 = −2µG(D(u1)n12) · τ 12. (11)

Finally, we write the balance of forces across the interface in two different ways:
(A) including inertial forces

((−2µD(u1) + p1I)n12) · n12 +
1

2
(u1 · u1) = p2, (12)

(B) without inertial forces
((−2µD(u1) + p1I)n12) · n12 = p2, (13)

Condition (12) arises naturally from the momentum equation written in divergence form. Even though we are
not using the divergence form of the momentum equation, we consider this condition as it is mathematically
well-suited. With (12) we can prove an unconditional existence of a weak solution.

Condition (13) is the usual condition employed in the linear case of Stokes coupled with Darcy (see for
instance [12, 11, 22, 27, 23, 24, 13, 18, 6]). One may argue that this condition is more physical. However,
condition (13) requires additional assumptions on the data to prove existence of the solutions, and uniqueness
can only be obtained locally.

The objective of the paper is to shed more light on the resulting two problems. One problem employs
an interface condition that is less physical but more mathematical whereas the other problem employs an
interface condition that is less mathematical but more physical. In this work we point out the differences in
the mathematical analysis and we provide some numerical comparisons.

The rest of the paper is as follows. Existence and uniqueness of weak solutions are obtained in Section 2.
A multinumerics approach is proposed in Section 3. Theoretical error estimates are derived in Section 4.
Conclusions are given in the last section.
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2 VARIATIONAL FORMULATION

2 Variational Formulation

Let Hs(O) be the usual Sobolev space of order s (see [1]) with norm ‖ · ‖Hs(O). We first lift the Dirichlet

boundary condition (7). If gD ∈ H
1/2
00 (Γ2D), there exists a function pD ∈ H1(Ω2) satisfying:

pD = gD, on Γ2D, (14)

pD = 0, on Γ12, (15)

||pD||H1(Ω2) ≤ C0||gD||H1/2(Γ2D), (16)

where C0 is a constant that only depends on Ω2. We now define the standard Sobolev spaces:

X1 = {v1 ∈ (H1(Ω1))
2 : v1 = 0 on Γ1},

M1 = L2(Ω1),

M2 = {q2 ∈ H1(Ω2) : q2 = 0 on Γ2D}.
We propose the following variational formulations:

(WA)































Find u1 ∈ X1, p1 ∈ M1, p2 = ϕ2 + pD, with ϕ2 ∈ M2, s.t.
∀v1 ∈ X1, ∀q2 ∈ M2, 2µ

(

D(u1),D(v1)
)

Ω1
+

(

u1 · ∇u1, v1

)

Ω1
−

(

p1,∇ · v1

)

Ω1

+
(

ϕ2 −
1

2
u1 · u1, v1 · n12

)

Γ12
+

1

G

(

u1 · τ 12, v1 · τ 12

)

Γ12
−

(

u1 · n12, q2

)

Γ12
+

(

K∇ϕ2,∇q2)Ω2

=
(

f1, v1

)

Ω1
+

(

f2, q2

)

Ω2
−

(

K∇pD,∇q2

)

Ω2
+

(

gN, q2

)

Γ2N
,

∀q1 ∈ M1, (∇ · u1, q1)Ω1
= 0.

(WB)































Find u1 ∈ X1, p1 ∈ M1, p2 = ϕ2 + pD, with ϕ2 ∈ M2, s.t.
∀v1 ∈ X1, ∀q2 ∈ M2, 2µ

(

D(u1),D(v1)
)

Ω1
+

(

u1 · ∇u1, v1

)

Ω1
−

(

p1,∇ · v1

)

Ω1

+
(

ϕ2, v1 · n12

)

Γ12
+

1

G

(

u1 · τ 12, v1 · τ 12

)

Γ12
−

(

u1 · n12, q2

)

Γ12
+

(

K∇ϕ2,∇q2)Ω2

=
(

f1, v1

)

Ω1
+

(

f2, q2

)

Ω2
−

(

K∇pD,∇q2

)

Ω2
+

(

gN, q2

)

Γ2N
,

∀q1 ∈ M1, (∇ · u1, q1)Ω1
= 0.

Problems (WA) and (WB) are very similar as they differ only by one term, namely (
1

2
u1 · u1, v1 · n12

)

Γ12

arising from condition (12). We have used the notation (·, ·)O for the L2 inner-product on a region O. We
recall the usual Cauchy-Schwarz and Young’s inequalities:

∀v, w ∈ L2(O), |(v, w)O | ≤ ‖v‖L2(O)‖w‖L2(O), (17)

∀a, b ∈ R, ∀δ > 0, ab ≤ δ

2
a2 +

1

2δ
b2. (18)

We also recall Poincaré and Korn’s inequalities and trace and Sobolev inequalities: there exist constants P1,
C1, C2, C4 and P4, that only depend on Ω1, and P2, C3 that only depend on Ω2, such that for all v ∈ X1,

‖v‖L2(Ω1) ≤ P1‖∇v‖L2(Ω1), ‖v‖L4(Ω1) ≤ P4‖∇v‖L2(Ω1) , (19)

‖∇v‖L2(Ω1) ≤ C1‖D(v)‖L2(Ω1) , (20)

‖v‖L2(Γ12) ≤ C2‖∇v‖L2(Ω1), ‖v‖L4(Γ12) ≤ C4‖∇v‖L2(Ω1) , (21)

and for all q ∈ M2,
‖q‖L2(Ω2) ≤ P2‖∇q‖L2(Ω2), (22)

‖q‖L2(Γ2N) ≤ C3‖∇q‖L2(Ω2); (23)

moreover, owing to (9), for all q ∈ H1(Ω2):

1√
λmax

‖K1/2∇q‖L2(Ω2) ≤ ‖∇q‖L2(Ω2) ≤
1√
λmin

‖K1/2∇q‖L2(Ω2) . (24)

We first show that variational formulations and corresponding model problems are equivalent.
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2 VARIATIONAL FORMULATION

Lemma 1. If (u1, p1, p2) ∈ X1 ×M1×H1(Ω2) satisfies (1)-(12), then it is also a solution to problem (WA).
If (u1, p1, p2) ∈ X1 × M1 × H1(Ω2) satisfies (1)-(11) and (13), then it is also a solution to problem (WB).
The converse of both statements is also true.

Proof. We first consider the problem (1)-(12) with solution (u1, p1, p2) ∈ X1 × M1 × H1(Ω2). Multiply (1),
(2) and (5) by test functions v1 ∈ X1, q1 ∈ M1 and q2 ∈ M2 respectively and use Green’s theorem and
boundary conditions:

2µ(D(u1), D(v1))Ω1
− (p1,∇ · v1)Ω1

+ (u1 · ∇u1, v1)Ω1

+((−2µD(u1) + p1I)n12, v1)Γ12
= (f1, v1)Ω1

, (25)

(∇ · u1, q1)Ω1
= 0, (26)

(K∇p2,∇q2)Ω2
+ (K∇p2 · n12, q2)Γ12

= (f2, q2)Ω2
+ (gN, q2)Γ2N

. (27)

Rewriting v1 = (v1 · n12)n12 + (v1 · τ 12)τ 12, adding (25) and (27) and using the interface conditions, we
obtain:

2µ(D(u1), D(v1))Ω1
− (p1,∇ · v1)Ω1

+ (u1 · ∇u1, v1)Ω1
+ (K∇p2,∇q2)Ω2

+
(

p2 −
1

2
u1 · u1, v1 · n12

)

Γ12

+
1

G

(

u1 · τ 12, v1 · τ 12

)

Γ12
−

(

u1 · n12, q2

)

Γ12
= (f1, v)Ω1

+ (f2, q2)Ω2
+ (gN, q2)Γ2N

,

(∇ · u1, q1)Ω1
= 0.

We now define ϕ2 = p2 − pD and remark that the trace p2 = ϕ2 on Γ12 due to (15). We obtain the resulting
equations:

2µ(D(u1), D(v1))Ω1
− (p1,∇ · v1)Ω1

+ (u1 · ∇u1, v1)Ω1
+ (K∇ϕ2,∇q2)Ω2

+
(

ϕ2 −
1

2
u1 · u1, v1 · n12

)

Γ12

+
1

G

(

u1 · τ 12, v1 · τ 12

)

Γ12
−

(

u1 · n12, q2

)

Γ12
= (f 1, v1)Ω1

+ (f2, q2)Ω2
+ (gN, q2)Γ2N

− (K∇pD,∇q2)Ω2
,

(∇ · u1, q1)Ω1
= 0,

which correspond to problem (WA). Conversely, assume that (u1, p1, p2) is a solution to (WA). By choosing
appropriate test functions, we recover the equations (1), (2) and (5) in a distributional sense. First, take
v1 ∈ D(Ω1), q1 = q2 = 0. We recall that for any domain O, the space D(O) is the space of C∞ functions
with compact support in O (see [1]). We obtain in the sense of distributions:

−∇ · (2µD(u1) − p1I) + u1 · ∇u1 = f1. (28)

Second, take q1 ∈ D(Ω1), v1 = 0, q2 = 0:
∇ · u1 = 0. (29)

Third, take q2 ∈ D(Ω2), v1 = 0, q1 = 0:

−∇ · K∇(ϕ2 + pD) = f2. (30)

Next, multiply (28), (30) by functions v1 ∈ X1 and q2 ∈ M2 respectively, use Green’s theorem, add the two
equations and compare with (WA):

(ϕ2 −
1

2
(u1 · u1), v1 · n12)Γ12

− (u1 · n12, q2)Γ12
+

1

G
(u1 · τ 12, v1 · τ 12)Γ12

− (gN, q2)Γ2N

= ((−2µD(u1) + p1I)n12, v1)Γ12
+ (K∇p2 · n12, q2)Γ12

− (K∇p2 · n2, q2)Γ2N
. (31)

By choosing v1 = 0 and either q2|Γ12
= 0 or q2|Γ2N

= 0, we recover the Neumann boundary condition (8)
and the interface condition (10). Next, by choosing q2 = 0 and v1 = v1n12 where v1 is a smooth function
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2.1 Existence of solution to problem (W̃A) and problem (W̃B) 2 VARIATIONAL FORMULATION

defined on each curvilinear segment of Γ12 and vanishing in a neighborhood of ∂Ω1 \ Γ12, we recover the
interface condition (12) by noting that p2 = ϕ2 on Γ12 due to (15). Finally, choosing q2 = 0 and v1 = v1τ 12

where v1 is a smooth function defined on each curvilinear segment of Γ12 and vanishing in a neighborhood of
∂Ω1 \ Γ12, we recover the interface condition (11). The equivalence of problem (WB) and (1)-(11) with (13)
is obtained in a very similar fashion.

We now prove existence and uniqueness of the weak solutions of (WA) and (WB). For this, we restrict the
test functions v1 to the subspace of divergence free functions:

V1 =
{

v1 ∈ X1, ∇ · v1 = 0}.

The variational formulations then become:

(W̃A)



























Find u1 ∈ V1, p2 = ϕ2 + pD, with ϕ2 ∈ M2, s.t.

∀v1 ∈ V 1, ∀q2 ∈ M2, 2µ
(

D(u1),D(v1)
)

Ω1
+

(

u1 · ∇u1, v1

)

Ω1
+

(

ϕ2 −
1

2
u1 · u1, v1 · n12

)

Γ12

+
1

G

(

u1 · τ 12, v1 · τ 12

)

Γ12
−

(

u1 · n12, q2

)

Γ12
+

(

K∇ϕ2,∇q2)Ω2

=
(

f1, v1

)

Ω1
+

(

f2, q2

)

Ω2
−

(

K∇pD,∇q2

)

Ω2
+

(

gN, q2

)

Γ2N
.

(W̃B)























Find u1 ∈ V1, p2 = ϕ2 + pD, with ϕ2 ∈ M2, s.t.
∀v1 ∈ V 1, ∀q2 ∈ M2, 2µ

(

D(u1),D(v1)
)

Ω1
+

(

u1 · ∇u1, v1

)

Ω1
+

(

ϕ2, v1 · n12

)

Γ12

+
1

G

(

u1 · τ 12, v1 · τ 12

)

Γ12
−

(

u1 · n12, q2

)

Γ12
+

(

K∇ϕ2,∇q2)Ω2

=
(

f1, v1

)

Ω1
+

(

f2, q2

)

Ω2
−

(

K∇pD,∇q2

)

Ω2
+

(

gN, q2

)

Γ2N
.

For α = A, B, problems (Wα) and (W̃α) are equivalent in the sense that if (u1, p1, p2) is a solution to (Wα)
then clearly (u1, p2) is also a solution to (W̃α). Conversely, if (u1, p2) is a solution to (W̃α), there is a unique
p1 ∈ M1 such that (u1, p1, p2) is a solution to (Wα). This result is a consequence of the following inf-sup
condition proved in [16].

inf
q1∈M1

sup
(v1,q2)∈X1×M2

|(∇ · v1, q1)Ω1
|

(‖∇v1‖2
L2(Ω1) + ||∇q2||2L2(Ω2))

1/2‖q1‖L2(Ω1)

≥ β > 0.

Therefore, we now focus on the existence and uniqueness of solution to (W̃A) and to (W̃B). The proofs are
similar to the ones obtained for the homogeneous problem analyzed in [16]. We give them for completeness.

2.1 Existence of solution to problem (W̃A) and problem (W̃B)

We use the technique of the Galerkin method. Since the spaces V 1 and M2 are separable, let {(wm, tm)}m≥1

be a sequence of smooth functions that form a basis of Y = V 1 ×M2. Consider the finite dimensional space
Ym = span{(wi, ti) : 1 ≤ i ≤ m} equipped with the inner-product:

((v, q), (w, t))Y = 2µ(D(v), D(w))Ω1
+ (K∇q,∇t)Ω2

.

We restrict problem (W̃A) to Ym and obtain a finite dimensional problem:

(W̃A,m)



























Find (um, ϕm) ∈ Ym s.t.

∀1 ≤ i ≤ m, 2µ
(

D(um),D(wi)
)

Ω1
+

(

um · ∇um,wi

)

Ω1
+

(

ϕm − 1

2
um · um,wi · n12

)

Γ12

+
1

G

(

um · τ 12,wi · τ 12

)

Γ12
−

(

um · n12, ti
)

Γ12
+

(

K∇ϕm,∇ti)Ω2

=
(

f1,wi

)

Ω1
+

(

f2, ti
)

Ω2
−

(

K∇pD,∇ti
)

Ω2
+

(

gN, ti
)

Γ2N
.
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2.1 Existence of solution to problem (W̃A) and problem (W̃B) 2 VARIATIONAL FORMULATION

We then define a continuous mapping ΨA,m : Ym → Ym:

(

ΨA,m(v, q), (w, t))Y = 2µ
(

D(v),D(w)
)

Ω1
+

(

v · ∇v,w
)

Ω1
+

(

q − 1

2
v · v,w · n12

)

Γ12
+

1

G

(

v · τ 12,w · τ 12

)

Γ12

−
(

v · n12, t
)

Γ12
+

(

K∇q,∇t)Ω2
−

(

f1,w
)

Ω1
−

(

f2, t
)

Ω2
+

(

K∇pD,∇t
)

Ω2
−

(

gN, t
)

Γ2N
.

Clearly a zero of ΨA,m is a solution to problem (W̃A,m). We will apply a corollary of Brouwer’s fixed point
theorem to conclude that there is at least one zero of ΨA,m in a certain ball centered at the origin. For
completeness, the result is recalled below [15].

Lemma 2. Let H be a finite dimensional Hilbert space with inner-product (·, ·)H and norm ‖ · ‖H . Let F be
a continuous mapping from H into H. Assume there is a constant R such that

∀v ∈ H with ‖v‖H = R, (F(v), v)H ≥ 0.

Then, there exists an element v0 ∈ H such that

F(v0) = 0, ‖v0‖H ≤ R.

Therefore, we evaluate

(

ΨA,m(v, q), (v, q))Y = 2µ
(

D(v),D(v)
)

Ω1
+

(

v · ∇v, v
)

Ω1
+

(

q − 1

2
v · v, v · n12

)

Γ12
+

1

G

(

v · τ 12, v · τ 12

)

Γ12

−
(

v · n12, q
)

Γ12
+

(

K∇q,∇q)Ω2
−

(

f1, v
)

Ω1
−

(

f2, q
)

Ω2
+

(

K∇pD,∇q
)

Ω2
−

(

gN, q
)

Γ2N
.

We remark that for v ∈ V 1

(

v · ∇v, v
)

Ω1
= −1

2

(

∇ · v, v · v
)

Ω1
+

1

2

(

v · n1, v · v
)

∂Ω1
=

1

2

(

v · n1, v · v
)

∂Ω1
(32)

Therefore,

(

v · ∇v, v
)

Ω1
+

(

q − 1

2
v · v, v · n12

)

Γ12
−

(

v · n12, q
)

Γ12
= 0,

because v = 0 on Γ1. We are left with

(

ΨA,m(v, q), (v, q))Y = 2µ‖D(v)‖2
L2(Ω1) +

1

G
‖v · τ 12‖2

L2(Γ12) + ‖K1/2∇q‖2
L2(Ω2)

−
(

f1, v
)

Ω1
−

(

f2, q
)

Ω2
+

(

K∇pD,∇q
)

Ω2
−

(

gN, q
)

Γ2N
. (33)

We now bound the terms in the second line of (33). Using (17), (19), (20) and (18), we obtain

|
(

f1, v
)

Ω1
| ≤ ||f1||L2(Ω1)||v||L2(Ω1) ≤ P1C1||D(v)||L2(Ω1)||f1||L2(Ω1)

≤ µ

2
||D(v)||2L2(Ω1) +

P2
1C2

1

2µ
||f1||2L2(Ω1). (34)

Similarly, using (17), (22), (24) and (18), we have

|
(

f2, q)Ω2
| ≤ 1

4
||K1/2∇q||2L2(Ω2) +

1

λmin
P2

2 ||f2||2L2(Ω2). (35)

Using the bounds (16), (17) and (24), we have

|
(

K∇pD,∇q
)

Ω2
| ≤ 1

4
||K1/2∇q||2L2(Ω2) + C2

0λmax||gD||2H1/2(Γ2D). (36)
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Finally, using (17), (23), (24) and (18), we obtain

|
(

gN, q
)

Γ2N
| ≤ 1

4
||K1/2∇q||2L2(Ω2) +

C2
3

λmin
||gN||2L2(Γ2N). (37)

Therefore

(

ΨA,m(v, q), (v, q)
)

Y
≥ 1

4

(

2µ||D(v)||2L2(Ω1) + ||K1/2∇q||2L2(Ω2)

)

−
(P2

1C2
1

2µ
||f1||2L2(Ω1) +

P2
2

λmin
||f2||2L2(Ω2)

+C2
0λmax||gD||2H1/2(Γ2D) +

C2
3

λmin
||gN||2L2(Γ2N)

)

,

so
(

ΨA,m(v, q), (v, q)
)

Y
≥ 0 provided ‖(v, q)‖Y = ((v, q), (v, q))

1/2
Y = R0 with

R0 = 2

(P2
1C2

1

2µ
||f1||2L2(Ω1) +

P2
2

λmin
||f2||2L2(Ω2) + C2

0λmax||gD||2H1/2(Γ2D) +
C2

3

λmin
||gN||2L2(Γ2N)

)1/2

. (38)

Therefore, for any m, there is a solution (um, ϕm) of problem (W̃A,m) satisfying:

‖(um, ϕm)‖Y ≤ R0.

We have thus constructed a bounded sequence in the Hilbert space V 1 × M2. Therefore, there exists a
subsequence, still denoted by {(um, ϕm)}m, that converges weakly to an element (u, ϕ) ∈ V 1 ×M2. Using a
standard argument and Sobolev imbeddings, we can pass to the limit in the equation of problem (W̃A,m) as

m tends to infinity. Denoting p = ϕ + pD, we then obtain that (u, p) is a solution to problem (W̃A). Using
the same argument as above, we can show that any solution (u, ϕ) to problem (W̃A) is bounded:

2µ‖D(u)‖2
L2(Ω1) + ‖K1/2∇ϕ‖2

L2(Ω2)
≤ R2

0. (39)

This yields the bound:
2µ‖D(u)‖2

L2(Ω1) + ‖K1/2∇p‖2
L2(Ω2) ≤ R2

1, (40)

where
R2

1 = R2
0 + 2‖K1/2∇pD‖2

L2(Ω2). (41)

To summarize, we have proved the following lemma.

Lemma 3. There is a solution to problem (W̃A) satisfying (39).

Next, we show existence of a solution to (W̃B) under a small data condition.

Lemma 4. Let R0 defined by (38). Assume that

R2
0 <

2µ3

C6
1P4

4

. (42)

Then, there exists a solution to problem (W̃B) satisfying (39).

Proof. As in the proof above, we define a sequence of finite-dimensional problems (WB,m) whose solutions
converge to a solution to (WB).

(W̃B,m)























Find (um, ϕm) ∈ Ym s.t.
∀1 ≤ i ≤ m, 2µ

(

D(um),D(wi)
)

Ω1
+

(

um · ∇um,wi

)

Ω1
+

(

ϕm,wi · n12

)

Γ12

+
1

G

(

um · τ 12,wi · τ 12

)

Γ12
−

(

um · n12, ti
)

Γ12
+

(

K∇ϕm,∇ti)Ω2

=
(

f1,wi

)

Ω1
+

(

f2, ti
)

Ω2
−

(

K∇pD,∇ti
)

Ω2
+

(

gN, ti
)

Γ2N
.
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This yields the following continuous mapping ΨB,m : Ym → Ym:

(

ΨB,m(v, q), (w, t))Y = 2µ
(

D(v),D(w)
)

Ω1
+

(

v · ∇v,w
)

Ω1
+

(

q,w · n12

)

Γ12
+

1

G

(

v · τ 12,w · τ 12

)

Γ12

−
(

v · n12, t
)

Γ12
+

(

K∇q,∇t)Ω2
−

(

f1,w
)

Ω1
−

(

f2, t
)

Ω2
+

(

K∇pD,∇t
)

Ω2
−

(

gN, t
)

Γ2N
.

As above, we evaluate
(

ΨB,m(v, q), (v, q))Y and use (34), (35), (36), (37) as well as the bound:

(v · ∇v, v)Ω1
≤ C3

1P2
4‖D(v)‖3

L2(Ω1)
.

A simple calculation shows that if

2µ‖D(v)‖2
L2(Ω1) ≤

2µ3

C6
1P4

4

, (43)

then, using (38) we have
(

ΨB,m(v, q), (v, q))Y ≥ 1

4

(

‖(v, q)‖2
Y −R2

0

)

.

Therefore, if the following condition holds

R2
0 <

2µ3

C6
1P4

4

, (44)

there is a ball of radius R0 on which
(

ΨB,m(v, q), (v, q))Y ≥ 0. We thus obtain a solution (um, ϕm) of
problem (WB,m), that lies inside this ball and we obtain a solution to problem (WB) by passing to the limit.
This solution also satisfies the bound (39).

2.2 Uniqueness of solution to problem (W̃A) and problem (W̃B)

Lemma 5. Assume that the data satisfies:

16µ3

C6
1 (2P2

4 + 3C2
4C2)2

>
2P2

1C2
1

µ
||f1||2L2(Ω1) +

4P2
2

λmin
||f2||2L2(Ω2)

+4C2
0λmax||gD||2H1/2(Γ2D) +

4C2
3

λmin
||gN||2L2(Γ2N).

Then problem (W̃A) has a unique weak solution.

Proof. Assume that (u1
1, p

1
2) and (u2

1, p
2
2) are two solutions of problem (W̃A). Their difference, say (w1, z2),

belongs to the space V 1 × M2 and satisfies:

∀(v1, q2) ∈ V 1 × M2, 2µ(D(w1), D(v1))Ω1
+ (K∇z2,∇q2)Ω2

+ (w1 · ∇u1
1, v1)Ω1

+ (u2
1 · ∇w1, v1)Ω1

+
1

G
(w1 · τ 12, v1 · τ 12)Γ12

+ (z2 −
1

2
(w1 · u1

1), v1 · n12)Γ12
− (w1 · n12, q2)Γ12

− 1

2
(u2

1 · w1, v1 · n12)Γ12
= 0 .

By choosing (v1, q2) = (w1, z2) ∈ V 1 ×M2 and applying Green’s formula and the boundary condition on the
functions of X1, this equation becomes

2µ‖D(w1)‖2
L2(Ω1)

+ ‖K1/2∇z2‖2
L2(Ω2)

+
1

G
‖w1 · τ 12‖2

L2(Γ12)

+ (w1 · ∇u1
1, w1)Ω1

+
1

2

(

(w1 · w1, u
2
1 · n12)Γ12

− (w1 · (u1
1 + u2

1), w1 · n12)Γ12

)

= 0 .

(45)

Applying (19) and (20), the first non-linear term in the second line of (45) is bounded above by

‖w1‖2
L4(Ω1)‖∇u1

1‖L2(Ω1) ≤ C3
1P2

4

1√
µ
‖D(w1)‖2

L2(Ω1)

(√
µ‖D(u1

1)‖L2(Ω1)

)

.

8



3 A MULTINUMERICS SCHEME

Similarly, applying formulas (19)–(21), the second term in the second line of (45) is bounded above by

1

2
‖w1‖2

L4(Γ12)

(

‖u1
1‖L2(Γ12) + 2‖u2

1‖L2(Γ12)

)

≤ 1

2
C2

4C2C
3
1

1√
µ
‖D(w1)‖2

L2(Ω1)

(√
µ‖D(u1

1)‖L2(Ω1) + 2
√

µ‖D(u2
1)‖L2(Ω1)

)

.

Hence, using the a priori estimate (39), the second line in (45) is bounded above by

C3
1√
2µ

(

P2
4 +

3

2
C2

4C2

)

R0‖D(w1)‖2
L2(Ω1) .

Thus if

(2µ)3/2 > C3
1

(

P2
4 +

3

2
C2

4C2

)

R0 ,

then (w1, z2) = (0, 0).

We cannot show that any solution to problem (WB) is bounded. Therefore, we can only prove uniqueness of
the solution inside a certain ball.

Lemma 6. Assume that the data satisfies (42), namely:

2µ3

C6
1P4

4

>
2P2

1C2
1

µ
||f1||2L2(Ω1) +

4P2
2

λmin
||f2||2L2(Ω2)

+ 4C2
0λmax||gD||2H1/2(Γ2D) +

4C2
3

λmin
||gN||2L2(Γ2N).

Then problem (W̃B) has at most one weak solution satisfying

‖D(u)‖L2(Ω1) ≤
R0√
2µ

.

Proof. The proof is similar to the proof of uniqueness for the solution to (WA) if we assume that the solution
is bounded.

A straightforward consequence due to Lemma 1 is the existence and uniqueness of a solution to problem (WA)
and the existence and local uniqueness to problem (WB). In the next section, we propose a numerical scheme
for solving the multiphysics problem that employs the continuous finite element method for the Navier-Stokes
region with the discontinuous Galerkin method for the Darcy region.

3 A Multinumerics Scheme

Let Eh
1 be a conforming triangulation of Ω1 and let Eh

2 be a general subdivision of Ω2 consisting of triangular
elements. The mesh Eh

2 may contain hanging nodes. As usual, the parameter h denotes the maximum
diameter of the elements. We assume that the resulting mesh Eh = Eh

1 ∪ Eh
2 is regular [7]. In addition, we

assume that the vertices of the polygonal line Γ12 are vertices in the mesh Eh. However, the meshes Eh
1 and

Eh
2 do not have to match on the interface Γ12. In our numerical scheme, we propose to approximate the

Navier-Stokes velocity and pressure in conforming finite element spaces Xh
1 ⊂ X1 and Mh

1 ⊂ M1 satisfying
the discrete inf-sup condition with β∗ independent of h:

inf
q1∈Mh

1

sup
v1∈Xh

1

|(∇ · v1, q1)Ω1
|

‖∇v1‖L2(Ω1)‖q1‖L2(Ω1)
≥ β∗ > 0. (46)

9



3 A MULTINUMERICS SCHEME

Examples of such conforming finite elements are the Crouzeix-Raviart elements [8], the mini elements [3] and
the Taylor-Hood elements [19]. We also propose to approximate the Darcy pressure in totally discontinuous
finite element spaces. In order to define the discontinuous Galerkin method, we introduce further notation.
We denote by Γh

2 the set of interior edges in Ω2. To each edge e of Eh
2 we associate once and for all a unit

normal vector ne. For e ∈ Γ12, we set ne = n12, i.e. ne is the exterior normal to Ω1. If ne points from the
element E1 to the element E2, the jump [] and average {} of a function ϕ are given by:

[ϕ] = ϕ|E1 − ϕ|E2 , {ϕ} =
1

2
ϕ|E1 +

1

2
ϕ|E2 .

For an integer k2 ≥ 1, we define

Mh
2 = {q2 ∈ L2(Ω2) ; q2|Γ2D

= 0 and ∀E ∈ Eh
2 , q2|E ∈ IP k2

(E)},

equipped with the usual DG norm:

∀q2 ∈ Mh
2 , |||q2||| =

(

∑

E∈Eh
2

||K1/2∇q2||2L2(E) +
∑

e∈Γh
2

1

|e| ||[q2]||2L2(e)

)1/2

. (47)

Lemma 7. Assume that pD ∈ Hk2+1(Ω2) is the lift defined in (14)-(16). Then, there exists PD ∈ Mh
2 and

a constant C independent of h satisfying:

PD = 0, on Γ12, (48)

|||pD − PD||| ≤ Chk2‖pD‖Hk2+1(Ω2). (49)

In the rest of the text, we denote by C a generic constant independent of h and µ, that takes different values
at different places. Next, we define several bilinear forms: aNS, bNS, cNS are the discretizations of the viscous
term, pressure term and nonlinear term respectively in the Navier-Stokes equations; aD is the discretization
of the diffusion term in the Darcy equations; and γα, α = A, B, is the form containing terms related to the
interface Γ12.

∀v1,w1 ∈ Xh
1 , aNS(v1,w1) = 2µ(D(v1), D(w1))Ω1

,

∀v1 ∈ Xh
1 , ∀q1 ∈ Mh

1 , bNS(v1, q1) = −(q1,∇ · v1)Ω1
,

∀z1, v1,w1 ∈ Xh
1 , cNS(z1, v1,w1) =

1

2
(z1 · ∇v1,w1)Ω1

− 1

2
(z1 · ∇w1, v1)Ω1

+
1

2
(z1 · n12, v1 · w1)Γ12

,

∀q2, t2 ∈ Mh
2 , aD(q2, t2) =

∑

E∈Eh
2

(

K∇q2,∇t2
)

E
−

∑

e∈Γh
2

(

{K∇q2 · ne}[t2]
)

e

+ε
∑

e∈Γh
2

(

{K∇t2 · ne}, [q2]
)

e
+

∑

e∈Γh
2

σe

|e|
(

[q2], [t2]
)

e

∀v1, w1 ∈ Xh
1 , ∀q2, t2 ∈ Mh

2 , γB(v1, q2; w1, t2) =
(

q2,w1 · n12

)

Γ12
+

1

G

(

v1 · τ12,w1 · τ12

)

Γ12
−

(

v1 · n12, t2
)

Γ12
,

∀v1, w1 ∈ Xh
1 , ∀q2, t2 ∈ Mh

2 , γA(v1, q2; w1, t2) = γB(v1, q2; w1, t2) −
1

2

(

v1 · v1,w1 · n12

)

Γ12
.

In the definition of aD the parameter ε yields a symmetric bilinear form if ε = −1 and a non-symmetric
bilinear form if ε = 0 or ε = 1. The parameter σe is a penalty parameter that varies with respect to the edge
in Eh

2 . We recall that aD is coercive and corresponds to the NIPG (ε = 1), SIPG (ε = −1) or IIPG (ε = 0)
methods [29, 17, 9]. There exists a constant κ > 0 independent of h such that:

∀q2 ∈ Mh
2 , κ|||q2|||2 ≤ aD(q2, q2). (50)
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3 A MULTINUMERICS SCHEME

It has been shown that if ε ∈ {−1, 0}, property (50) is valid if the penalty parameter is large enough. From
[14], the lower bound for the penalty parameter is:

∀e = ∂E1
e ∩ ∂E2

e , σe ≥ 3λ2
max

2λmin
k2(k2 + 1)(cot θE1

e
+ cot θE2

e
),

where θEi
e

denotes the smallest angle in the triangle Ei
e. We also define the form L:

∀v1 ∈ Xh
1 , ∀q2 ∈ Mh

2 , L(v1, q2) =
(

f1, v1

)

Ω1
+

(

f2, q2

)

Ω2
+

(

gN, q2

)

Γ2N

−
∑

E∈Eh
2

(K∇pD,∇q2)E +
∑

e∈Γh
2

({K∇pD · ne}, [q2])e.

We can now introduce the numerical solutions to problem (WA) and to problem (WB):

(W h
A)















Find U1 ∈ Xh
1 , P1 ∈ Mh

1 , P2 = Φ2 + PD, with Φ2 ∈ Mh
2 , s.t.

∀v1 ∈ Xh
1 , ∀q2 ∈ Mh

2 , aNS(U 1, v1) + bNS(v1, P1) + cNS

(

U1;U1, v1

)

+aD(Φ2, q2) + γA(U 1, Φ2; v1, q2) = L(v1, q2),
∀q1 ∈ Mh

1 , bNS(U 1, q1) = 0.

(W h
B)















Find U1 ∈ Xh
1 , P1 ∈ Mh

1 , P2 = Φ2 + PD, with Φ2 ∈ Mh
2 , s.t.

∀v1 ∈ Xh
1 , ∀q2 ∈ Mh

2 , aNS(U 1, v1) + bNS(v1, P1) + cNS

(

U1;U1, v1

)

+aD(Φ2, q2) + γB(U 1, Φ2; v1, q2) = L(v1, q2),
∀q1 ∈ Mh

1 , bNS(U 1, q1) = 0.

We end this section by giving important properties of the discrete spaces and the continuity property of the
bilinear form cNS.
Approximation properties. Assume that (v1, p1, p2) ∈ X1 ×M1×M2 is smooth enough, i.e. v1 ∈ Hk1+1(Ω1),
p1 ∈ Hk1(Ω1) and p2 ∈ Hk2+1(Ω2) for integers k1, k2. Then, there exists an approximation (ṽ1, p̃1, p̃2) ∈
Xh

1 × Mh
1 × Mh

2 such that

‖∇(v1 − ṽ1)‖L2(Ω1) ≤ Chk1‖v1‖Hk1+1(Ω1), (51)

∀q1 ∈ Mh
1 , (∇ · (v1 − ṽ1), q1)Ω1

= 0, (52)

‖p1 − p̃1‖L2(Ω1) ≤ Chk1‖p1‖Hk1 (Ω1), (53)

i = 0, 1, ‖∇i(p2 − p̃2)‖L2(Ω2) ≤ Chk2+1−i‖p2‖Hk2+1(Ω2). (54)

It is easy to check that (54) implies

|||p2 − p̃2||| ≤ Chk2‖p2‖Hk2+1(Ω2). (55)

L2 bound. There exists a constant C5 > 0 independent of h such that

∀q2 ∈ Mh
2 , ‖q2‖L2(Ω2) ≤ C5|||q2|||. (56)

Trace theorem. There exists a constant C6 > 0 independent of h such that

∀q2 ∈ Mh
2 , ‖q2‖L2(Γ12) ≤ C6|||q2|||. (57)

The proof of (56) is given in Lemma 6.2 of [17] and the proof of (57) is given in Theorem 4.4 of [16]. We
next show that the form cNS is continuous.

Lemma 8. There exists a constant C7 such that

∀z1, v1, w1 ∈ X1, cNS(z1;v1,w1) ≤ C7‖D(z1)‖L2(Ω1)‖D(v1)‖L2(Ω1)‖D(w1)‖L2(Ω1). (58)

An expression for the constant C7 is

C7 = C3
1 (P2

4 +
1

2
C2C

2
4 ).
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3.1 Consistency 3 A MULTINUMERICS SCHEME

Proof. Using (17), we have

cNS(z1; v1,w1) =
1

2
(z1 · ∇v1,w1)Ω1

− 1

2
(z1 · ∇w1, v1)Ω1

+
1

2
(z1 · n12, v1 ·w1)Γ12

≤ 1

2
||z1||L4(Ω1)

(

||∇v1||L2(Ω1)||w1||L4(Ω1) + ||∇w1||L2(Ω1)||v1||L4(Ω1)

)

+
1

2
||z1||L2(Γ12)||v1||L4(Γ12)||w1||L4(Γ12).

Using (19), (21) and (20) we have

cNS(z1; v1,w1) ≤ (P2
4 +

1

2
C2C

2
4 )‖∇z1‖L2(Ω1)‖∇v1‖L2(Ω1)‖∇w1‖L2(Ω1)

≤ C3
1 (P2

4 +
1

2
C2C

2
4 )‖D(z1)‖L2(Ω1)‖D(v1)‖L2(Ω1)‖D(w1)‖L2(Ω1).

3.1 Consistency

Lemma 9. Let (u1, p1, p2) be the solution to (1)-(12) that is smooth enough. Define ϕ2 = p2 − pD. Then,
we have for all v1 ∈ Xh

1 , q2 ∈ Mh
2 , q1 ∈ Mh

1 :

aNS(u1, v1) + bNS(v1, p1) + cNS

(

u1;u1,v1

)

+ aD(ϕ2, q2) + γA(u1, ϕ2; v1, q2) = L(v1, q2), (59)

bNS(u1, q1) = 0. (60)

Proof. Equation (60) is simply obtained by multiplying (2) by q1 ∈ Mh
1 and integrating over Ω1. Next, we

multiply (1) by a test function v1 ∈ Xh
1 , integrate over Ω1 and use Green’s theorem. The resulting equation

is exactly (25). Finally, we multiply (5) by a test function q2 ∈ Mh
2 , integrate over one element E, apply

Green’s theorem and sum over all elements in Eh
2 .

∑

E∈Eh
2

(K∇p2,∇q2)E −
∑

e∈Γh
2

({K∇p2 · ne}, [q2])e +
∑

e∈Γ12

(K∇p2 · n12, q2)Γ12
= (f2, q2)Ω2

+ (gN, q2)Γ12
.

Using the splitting p2 = ϕ2 + pD, we obtain:

∑

E∈Eh
2

(K∇ϕ2,∇q2)E −
∑

e∈Γh
2

({K∇ϕ2 · ne}, [q2])e +
∑

e∈Γ12

(K∇p2 · n12, q2)Γ12
(61)

= (f2, q2)Ω2
+ (gN, q2)Γ12

−
∑

E∈Eh
2

(K∇pD,∇q2)E +
∑

e∈Γh
2

({K∇pD · ne}, [q2])e. (62)

We then add (25) and (62), and use the fact that [ϕ2]|e = 0 in L2(e) for all e ∈ Γh
2 .

2µ(D(u1), D(v1))Ω1
− (p1,∇ · v1)Ω1

+ (u1 · ∇u1, v1)Ω1

+
∑

E∈Eh
2

(K∇ϕ2,∇q2)E −
∑

e∈Γh
2

({K∇ϕ2 · ne}, [q2])e + ε
∑

e∈Γh
2

({K∇q2 · ne}, [ϕ2])e

+
∑

e∈Γ12

(K∇p2 · n12, q2)Γ12
+ ((−2µD(u1) + p1I)n12, v1)Γ12

= (f1, v1)Ω1
+ (f2, q2)Ω2

+ (gN, q2)Γ12
−

∑

E∈Eh
2

(K∇pD,∇q2)E +
∑

e∈Γh
2

({K∇pD · ne}, [q2])e. (63)
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In this equation, the terms
∑

e∈Γ12
(K∇p2 ·n12, q2)Γ12

+ ((−2µD(u1) + p1I)n12, v1)Γ12
are handled exactly

as in the proof of Lemma 1. We remark that u1 ∈ V 1 and thus we have

(u1 · ∇u1, v1)Ω1
= −(u1 · ∇v1, u1)Ω1

+ (u1 · n12, v1 · u1)Γ12
,

which yields:
(u1 · ∇u1, v1)Ω1

= cNS(u1, u1, v1).

Combining this result with (63), we obtain equation (59).

Similarly, we can prove the following result:

Lemma 10. Let (u1, p1, p2) be the solution to (1)-(11) and (13) that is smooth enough. Define ϕ2 = p2−pD.
Then, we have for all v1 ∈ Xh

1 , q2 ∈ Mh
2 , q1 ∈ Mh

1 :

aNS(u1, v1) + bNS(v1, p1) + cNS

(

u1;u1,v1

)

+ aD(ϕ2, q2) + γB(u1, ϕ2; v1, q2) = L(v1, q2), (64)

bNS(u1, q1) = 0. (65)

3.2 Existence of Numerical Solution

We now proceed to show that there exists a unique solution to problem (W h
A). We define the space of weakly

divergence-free functions:
Vh

1 =
{

v1 ∈ Xh
1 : ∀q1 ∈ Mh

1 , bNS(v1, q1) = 0}.
We note that U1 ∈ Vh

1 so that the scheme (W h
A) reduces to:

∀v1 ∈ Xh
1 , ∀q2 ∈ Mh

2 , aNS(U 1, v1) + bNS(v1, P1) + cNS

(

U1;U1, v1

)

+aD(P2, q2) + γA(U 1, P2; v1, q2) = L(v1, q2). (66)

Clearly, if (U 1, P1, P2) is a solution to (W h
A), then (U 1, P2) is a solution to (66). Conversely, assume that

(U 1, P2) is a solution to (66). Then, the discrete inf-sup (46) implies that there exists a unique P1 ∈ Mh
1

such that (U 1, P1, P2) is a solution to (W h
A). Based on this equivalence between the two problems, it suffices

to show that there exists a solution (U1, P2) ∈ Vh
1 × Mh

2 of (66). We will use Lemma 2 and we define the
inner-product on Y h = V h

1 × Mh
2 :

(

(v1, q2), (w1, t2)
)

Y h = 2µ
(

D(v1),D(w1)
)

Ω1
+

∑

E∈E2
h

(

K∇q2,∇t2
)

E
+

∑

e∈Γh
2

1

|e|
(

[q2], [t2]
)

e
. (67)

Next define Ψh
A : Y h → Y h such that:

(

Ψh
A(v1, q2), (w1, t2)

)

Y h = aNS(v1, w1) + cNS

(

v1; v1,w1

)

+ aD(q2, t2) + γA(v1, q2; w1, t2) − L(w1, t2).

Using (50) and the definitions of the bilinear forms, we obtain a lower bound of
(

Ψh
A(v1, q2), (v1, q2)

)

Y h :

(

Ψh
A(v1, q2), (v1, q2)

)

Y h ≥ 2µ‖D(v1)‖2
L2(Ω1)

+ κ|||q2|||2 +
1

G
‖v1 · τ 12‖2

L2(Γ12) − L(v1, q2).

From (17), (18) and (56), we have for any δ > 0:

(

f2, q2)Ω2
≤ δ

2
|||q2|||2 +

C2
5

2δ
||f2||2L2(Ω2). (68)

Similarly, from (17), (18) and (57), we have for any δ > 0:

(gN, q2)Γ12
≤ δ

2
|||q2|||2 +

C2
6

2δ
||gN||2L2(Γ12). (69)
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Using a trace theorem [26], (17), (18) and (24), we have for any δ > 0:

∣

∣−
∑

E∈Eh
2

(K∇pD,∇q2)E +
∑

e∈Γh
2

({K∇pD ·ne}, [q2])e

∣

∣ ≤ δ|||q2|||2 +
λmax

2δ
‖pD‖2

H1(Ω2)
+

C2
t

2δ

∑

E∈Eh
2

‖pD‖2
H2(E). (70)

Combining the bounds (68), (69), (70) and (34), we obtain:

(

Ψh
A(v1, q2), (v1, q2)

)

Y h ≥ 3µ

2
‖D(v1)‖2

L2(Ω1)
+

κ

2
|||q2|||2 +

1

G
‖v1 · τ 12‖2

L2(Γ12)

−
(P2

1C2
1

2µ
‖f1‖2

L2(Ω1) +
2C2

5

κ
‖f2‖2

L2(Ω2) +
2C2

6

κ
‖gN‖2

L2(Γ2N) +
2λmax

κ
‖pD‖2

H1(Ω1) +
2C2

t

κ

∑

E∈Eh
2

‖pD‖2
H2(E)

)

.

Therefore,
(

Ψh
A(v1, q2), (v1, q2)

)

Y h ≥ 0 provided that ||(v1, q2)||Y h = R2 with

R2 = (max(
3

4
,
κ

2
))1/2

(P2
1C2

1

2µ
‖f1‖2

L2(Ω1) +
2C2

5

κ
‖f2‖2

L2(Ω2) +
2C2

6

κ
‖gN‖2

L2(Γ2N) +
2λmax

κ
‖pD‖2

H1(Ω1)
(71)

+
2C2

t

κ

∑

E∈Eh
2

‖pD‖2
H2(E)

)1/2
. (72)

This concludes the proof of existence of a solution (U 1, P2) of (66). The same argument can be used to show
that any solution (U 1, P2) of (66) is bounded as follows:

2µ‖D(U 1)‖2
L2(Ω1) + |||P2|||2 ≤ R2

2. (73)

The proof of existence of a solution to (W h
B) is more technical as the nonlinear term 1

2 (z1 · n12, v1 · w1)Γ12

of the form cNS remains. As above, we define Ψh
B : Y h → Y h such that:

(

Ψh
B(v1, q2), (w1, t2)

)

Y h = aNS(v1, w1) + cNS

(

v1; v1,w1

)

+ aD(q2, t2) + γB(v1, q2; w1, t2) − L(w1, t2).

This yields

(

Ψh
B(v1, q2), (v1, q2)

)

Y h ≥ 2µ‖D(v1)‖2
L2(Ω1)+κ|||q2|||2+

1

G
‖v1 ·τ 12‖2

L2(Γ12)+
1

2
(v1 ·n12, v1 ·v1)Γ12

−L(v1, q2).

Using the bound
1

2
(v1 · n12, v1 · v1)Γ12

≤ C3
1C2C

2
4

2
‖D(v1)‖3

L2(Ω1)

and the bounds (68), (69), (70) and (34), we obtain that
(

Ψh
B(v1, q2), (v1, q2)

)

Y h ≥ 0 provided that ||(v1, q2)||Y h =
R2 and that

2µ‖D(v1)‖2
L2(Ω1) ≤

32µ3

C6
1C2

2C4
4

.

These conditions are compatible if we assume that

R2
2 <

32µ3

C6
1C2

2C4
4

.

The rest of the proof is similar. We summarize our results in the following theorem.

Theorem 11. Let R2 be defined by (72). There exists a solution (U 1, P1, P2) of (W h
A) satisfying (73). If

the data satisfies

R2
2 <

32µ3

C6
1C2

2C4
4

, (74)

then there exists a solution (U 1, P1, P2) of (W h
B) satisfying (73).
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3.3 Uniqueness of Numerical Solution

Theorem 12. Let R2 be defined by (72). Under the condition

µ3/2 >
C3

1√
2
(P2

4 + C2C
2
4 )R2 (75)

problem (W h
A) admits a unique solution.

Proof. It suffices to prove uniqueness of the solution to (66). We assume that (U1
1, P

1
2 ) and (U2

1, P
2
2 ) are two

solutions satisfying (66), and let W1 = U1
1 −U2

1 and χ2 = P 1
2 − P 2

2 .

aNS(W1, v1) + cNS(U1
1,U

1
1, v1) − cNS(U

2
1,U

2
1, v1) + aD(χ2, q2) +

(

χ2, v1 · n12

)

Γ12
− 1

2

(

U1
1 · U1

1, v1 · n12

)

Γ12

+
1

2

(

U2
1 ·U2

1, v1 · n12

)

Γ12
+

1

G

(

W1 · τ12, v1 · τ12

)

Γ12
−

(

W1 · n12, q2

)

Γ12
= 0.

In particular, we choose v1 = W1 and q2 = χ2.

aNS(W1,W1) + aD(χ2, χ2) +
1

G
||W1 · τ12||2L2(Γ12) + cNS

(

U1
1,U

1
1,W1

)

− cNS

(

U2
1,U

2
1,W1

)

+
(

χ2,W1 · n12

)

Γ12

−1

2

(

U1
1 ·U1

1,W1 · n12

)

Γ12
+

1

2

(

U2
1 · U2

1,W1 · n12

)

Γ12
−

(

W1 · n12, χ2

)

Γ12
= 0.

Using (50) and rewriting the nonlinear terms as

cNS(U
1
1,U

1
1,W1) − cNS(U

2
1,U

2
1,W1) = cNS(W1,U

1
1,W1) + cNS(U

2
1,W1,W1),

−1

2

(

U1
1 · U1

1,W1 · n12

)

Γ12
+

1

2

(

U2
1 ·U2

1,W1 · n12

)

Γ12
= −1

2
(W 1 · U 1

1, W 1 · n12)Γ12
− 1

2
(W 1 · U 2

1, W 1 · n12)Γ12
,

we obtain

2µ‖D(W1)‖2
L2(Ω1) + κ|||χ2|||2 +

1

G
||W1 · τ12||2L2(Γ12)

+cNS(W1,U
1
1,W1) + cNS(U2

1,W1,W1) −
1

2
(W 1 · U 1

1, W 1 · n12)Γ12
− 1

2
(W 1 · U 2

1, W 1 · n12)Γ12
≤ 0.

From Lemma 8, we have

cNS(W1;U
1
1,W1) + cNS(U2

1;W1,W1) ≤ C7‖D(W 1)‖2
L2(Ω1)(‖D(U 1

1)‖L2(Ω1) + ‖D(U 2
1)‖L2(Ω1)).

Similarly, using (21) and (20), we have

1

2
(W 1·U 1

1, W 1·n12)Γ12
+

1

2
(W 1·U 2

1, W 1·n12)Γ12
≤ 1

2
C2

4C2C
3
1‖D(W 1)‖2

L2(Ω1)(‖D(U 1
1)‖L2(Ω1)+‖D(U 2

1)‖L2(Ω1)).

Combining the two bounds above with (73), we obtain:

(

2µ − R2√
µ

(
√

2C7 +
1√
2
C3

1C2C
2
4 )

)

‖D(W1)‖2
L2(Ω1)

+ κ|||χ2|||2 +
1

G
||W1 · τ12||2L2(Γ12)

≤ 0.

This clearly implies that W 1 = 0 and χ2 = 0 if the condition

2µ >
R2√

µ
(
√

2C7 +
1√
2
C3

1C2C
2
4 )

is satisfied. This condition is equivalent to (75).
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The proof of uniqueness for the solution to (W h
B) involves less terms but is only valid in a certain ball. We

skip the proof and state the result.

Theorem 13. Let R2 be defined by (72). Under the condition (74) and the condition

µ3/2 >
C3

1√
2
(P2

4 +
1

2
C2C

2
4 )R2 (76)

problem (W h
B) admits at most one solution satisfying (73).

4 A Priori Error Estimates

Theorem 14. Assume that the solution to problem (WA) is smooth enough, i.e. u1 ∈ (Hk1+1(Ω1))
2, p1 ∈

Hk1(Ω1) and p2 = ϕ2 + pD with ϕ2 ∈ Hk2+1(Ω2). Let R1 be defined by (41) and let R2 be defined by (72).
Assume that the data satisfies:

µ3/2 >
C3

1√
2
(P2

4 + C2C
2
4 )(R1 + R2).

Let (U 1, P1, P2) be a solution to problem (W h
A). Then, there exists a constant C independent of h and µ such

that

µ‖D(u1 − U 1)‖2
L2(Ω1) + |||ϕ2 − Φ2|||2 + ‖(u1 − U 1) · τ 12‖2

L2(Γ12)
≤ C

(

1 +
(R1 + R2)

2

µ2

)

h2k1‖u1‖2
Hk1+1(Ω1)

+C
(

1 +
1

µ

)

h2k2‖ϕ2‖2
Hk2+1(Ω2) + C

1

µ
h2k1‖p1‖2

Hk1 (Ω1)
.

Proof. Let ũ1, p̃1, ϕ̃2 be approximations to u1, p1, ϕ2 in the spaces Xh
1 , Mh

1 and Mh
2 respectively. Assume

that the error bounds (51), (53) and (54) hold. Let

χ1 = U1 − ũ1, ξ1 = P1 − p̃1, ξ2 = Φ2 − ϕ̃2,

ζ1 = u1 − ũ1, η1 = p1 − p̃1, η2 = ϕ2 − ϕ̃2.

Using the consistency Lemma 9 and the definition of problem (W h
A), we obtain the error equations:

∀v1 ∈ Xh
1 , ∀q2 ∈ Mh

2 , aNS(χ1, v1) + aD(ξ2, q2) + bNS(v1, ξ1) + cNS(U1;U1, v1) − cNS(u1;u1, v1)

+γA(U 1, Φ2; v1, q2) − γA(u1, ϕ2; v1, q2) = aNS(ζ1, v1) + aD(η2, q2) + bNS(v1, η1),

∀q1 ∈ Mh
1 , bNS(χ1, q1) = bNS(ζ1, q1).

Let v1 = χ1, q1 = ξ1, q2 = ξ2, then from (50), we have

2µ‖D(χ1)‖2
L2(Ω1) + κ|||ξ2|||2 + cNS(U1;U1, χ1) − cNS(u1;u1, χ1)

+γA(U 1, Φ2; χ1, ξ2) − γA(u1, ϕ2; χ1, ξ2) ≤ aNS(ζ1, χ1) + aD(η2, ξ2) + bNS(χ1, η1) − bNS(ζ1, ξ1). (77)

We first expand the terms involving the linear form γA:

γA(U 1, Φ2; χ1, ξ2) − γA(u1, ϕ2; χ1, ξ2) = −1

2
(U 1 · U 1, χ1 · n12)Γ12

+
1

2
(u1 · u1, χ1 · n12)Γ12

+
1

G
‖χ1 · τ 12‖2

L2(Γ12)

− 1

G
(ζ1 · τ 12, χ1 · τ 12)Γ12

− (η2, χ1 · n12)Γ12
+ (ξ2, ζ1 · n12)Γ12

. (78)
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The nonlinear terms are rewritten as

A1 = −1

2
(U 1 · U 1, χ1 · n12)Γ12

+
1

2
(u1 · u1, χ1 · n12)Γ12

=
1

2
(U1 · χ1, χ1 · n12)Γ12

+
1

2
(χ1 · u1, χ1 · n12)Γ12

−1

2
(U1 · ζ1, χ1 · n12)Γ12

− 1

2
(ζ1 · u1, χ1 · n12)Γ12

, (79)

and bounded by using (17), (18), (21), (20), (40) and (73)

A1 ≤ 1

2
C3

1C2C
2
4‖D(χ1)‖2

L2(Ω1)(‖D(U 1)‖L2(Ω1) + ‖D(u1)‖L2(Ω1))

+C‖D(χ1)‖L2(Ω1)‖∇ζ1‖L2(Ω1)(‖D(U 1)‖L2(Ω1) + ‖D(u1)‖L2(Ω1))

≤ µ

5
‖D(χ1)‖2

L2(Ω1) +
1

2
C3

1C2C
2
4

R1 + R2√
2µ

‖D(χ1)‖2
L2(Ω1)

+
C(R1 + R2)

2

µ2
‖∇ζ1‖2

L2(Ω1).

The linear terms in (78) are bounded by (17), (18), (21), (20) and (57)

1

G
(ζ1 · τ 12, χ1 · τ 12)Γ12

≤ 1

2G
||χ1 · τ 12||2L2(Γ12)

+ C‖∇ζ1‖2
L2(Ω1)

(η2, χ1 · n12)Γ12
≤ µ

5
‖D(χ1)‖2

L2(Ω1) +
C

µ
|||η2|||2,

(ξ2, ζ1 · n12)Γ12
≤ κ

5
|||ξ2|||2 + C‖∇ζ1‖2

L2(Ω1)
.

We rewrite the nonlinear terms involving cNS in (77) in a similar way as with the term A1 defined in (79).
We obtain a bound by using Lemma 8.

cNS(U1;U1, χ1) − cNS(u1;u1, χ1) = cNS(U 1; χ1, χ1) + cNS(χ1; u1, χ1)

−cNS(U 1; ζ1, χ1) − cNS(ζ1; u, χ1)

≤ µ

5
‖D(χ1)‖2

L2(Ω1) + C7
R1 + R2√

2µ
‖D(χ1)‖2

L2(Ω1)

+C
(R1 + R2)

2

µ2
‖∇ζ1‖2

L2(Ω1).

The term aNS(ζ1, χ1) is simply bounded using Cauchy-Schwarz and Young’s inequalities.

aNS(ζ1, χ1) ≤
µ

5
‖D(χ1)‖2

L2(Ω1) + Cµ‖D(ζ1)‖2
L2(Ω1).

The term bNS(ζ1, ξ1) vanishes because of property (52). The term aD(η2, ξ2) is bounded using standard DG
techniques (see [26]) and the approximation property (54):

aD(η2, ξ2) ≤
κ

4
|||ξ2|||2 + Ch2k2‖ϕ2‖2

Hk2+1(Ω2).

Finally, the term bNS(χ1, η1) is bounded as:

bNS(χ1, η1) ≤
µ

5
‖D(χ1)‖2

L2(Ω1)
+

C

µ
‖η1‖2

L2(Ω1).

Combining the results above, the error equation (77) becomes:

(

µ − (
1

2
C3

1C2C
2
4 + C7)

R1 + R2√
2µ

)

‖D(χ1)‖2
L2(Ω1)

+
κ

2
|||ξ2|||2 +

1

2G
‖χ1 · τ 12‖2

L2(Γ12)

≤ C
(

1 +
(R1 + R2)

2

µ2

)

‖∇ζ1‖2
L2(Ω1) + C

1

µ
|||η2|||2 + Ch2k2‖ϕ2‖2

Hk2+1(Ω2) + C
1

µ
‖η1‖2

L2(Ω1).
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The final result is obtained by using the approximation properties (51), (53), (55), a trace theorem and the
inequalities:

‖D(u1 − U 1)‖2
L2(Ω1) ≤ C‖D(χ1)‖2

L2(Ω1)
+ C‖D(ζ1)‖2

L2(Ω1),

‖(u1 − U 1) · τ 12‖2
L2(Γ12)

≤ C‖(χ1) · τ 12‖2
L2(Γ12)

+ C‖(ζ1) · τ 12‖2
L2(Γ12),

|||p2 − P2|||2 ≤ C|||ξ2|||2 + C|||η2|||2.

A straight consequence of Lemma 7 and Theorem 14 is a bound on the pressure error.

Corollary 15. Under the assumptions of Theorem 14 and if the function pD belongs to Hk2+1(Ω2), there
exists a constant C independent of h and µ such that

|||p2 − P2|||2 ≤ C
(

1 +
(R1 + R2)

2

µ2

)

h2k1‖u1‖2
Hk1+1(Ω1) + C

(

1 +
1

µ

)

h2k2‖ϕ2‖2
Hk2+1(Ω2)

+Ch2k2‖pD‖2
Hk2+1(Ω2)

+ C
1

µ
h2k1‖p1‖2

Hk1 (Ω1).

Theorem 16. Under the assumptions of Theorem 14 and Corollary 15, there exists a constant C independent
of h such that

‖p1 − P1‖L2(Ω1) ≤ Chk1‖p1‖Hk1 (Ω1) + Chk1‖u1‖Hk1+1(Ω1) + Chk2(‖ϕ2‖Hk2+1(Ω2) + ‖pD‖Hk2+1(Ω2)).

Proof. Using the same notation as in the proof of Theorem 14, we can rewrite the error equation by taking
q2 = 0:

bNS(v1, ξ1) = bNS(v1, η1) + aNS(u1 − U1, v1) −
1

2
(u1 · u1 − U 1 · U1, v1 · n12)Γ12

+cNS(u1; u1, v1) − cNS(U 1; U 1, v1) + (ϕ2 − Φ2, v1 · n12)Γ12
+

1

G
((u1 − U 1) · τ 12, v1 · τ 12)Γ12

.

We now bound all terms in the right-hand side. Cauchy-Schwarz’s inequality yields simply

bNS(v1, η1) ≤ C‖∇v1‖L2(Ω1)‖η1‖L2(Ω1),

aNS(u1 − U 1, v1) ≤ Cµ‖∇v1‖L2(Ω1)‖D(u1 − U 1)‖L2(Ω1).

The nonlinear terms are handled like the term A1 in (79).

1

2
(u1 · u1 − U 1 · U 1, v1 · n12)Γ12

=
1

2
(U1 · χ1, v1 · n12)Γ12

+
1

2
(χ1 · u1, v1 · n12)Γ12

−1

2
(U1 · ζ1, v1 · n12)Γ12

− 1

2
(ζ1 · u1, v1 · n12)Γ12

≤ C(R1 + R2)√
µ

‖∇v1‖L2(Ω1)(‖D(χ1)‖L2(Ω1) + ‖∇ζ1‖L2(Ω1)),

cNS(u1; u1, v1) − cNS(U 1; U 1, v1) = cNS(U 1; χ1, v1) + cNS(χ1; u1, v1)

−cNS(U 1; ζ1, v1) − cNS(ζ1; u, v1)

≤ C(R1 + R2)√
µ

‖∇v1‖L2(Ω1)(‖D(χ1)‖L2(Ω1) + ‖∇ζ1‖L2(Ω1)).

Finally, the last two terms are bounded as:

(ϕ2 − Φ2, v1 · n12)Γ12
≤ C(|||ξ2||| + ‖η2‖L2(Γ12))‖∇v1‖L2(Ω1),

1

G
((u1 − U 1) · τ 12, v1 · τ 12)Γ12

≤ C‖(u1 − U 1) · τ 12‖L2(Ω1)‖∇v1‖L2(Ω1).

18



5 NUMERICAL EXAMPLES

Therefore, we obtain:
bNS(v1, ξ1) ≤ CΘ‖∇v1‖L2(Ω1),

with

Θ = ‖η1‖L2(Ω1) + µ‖D(u1 − U 1)‖L2(Ω1) +
R1 + R2√

µ
(‖D(χ1)‖L2(Ω1) + ‖∇ζ1‖L2(Ω1))

+|||ξ2||| + ‖η2‖L2(Γ12) + ‖(u1 − U 1) · τ 12‖L2(Ω1).

The inf-sup condition (46) then yields

‖ξ1‖L2(Ω1) ≤
C

β∗

Θ.

Using the approximation results (51), (53), (54) and Theorem 14, we can conclude.

The convergence of the solution of problem (W h
B) is obtained in a similar fashion. The derivation of the error

estimates involves less terms, for instance the term A1 in (79) does not appear. We state only the results.

Theorem 17. Assume that the solution to problem (WB) is smooth enough, i.e. u1 ∈ (Hk1+1(Ω1))
2, p1 ∈

Hk1(Ω1) and p2 = ϕ2 + pD with ϕ2 ∈ Hk2+1(Ω2) and pD belongs to Hk2+1(Ω2). Let R1 be defined by (41)
and let R2 be defined by (72). Assume that the data satisfies:

µ3/2 >
C3

1√
2
(P2

4 +
1

2
C2C

2
4 )(R1 + R2).

Let (U 1, P1, P2) be a solution to problem (W h
B). Then, there exists a constant C independent of h and µ such

that

µ‖D(u1 − U 1)‖2
L2(Ω1) + |||p2 − P2|||2 + ‖(u1 − U 1) · τ 12‖2

L2(Γ12) ≤ C
(

1 +
(R1 + R2)

2

µ2

)

h2k1‖u1‖2
Hk1+1(Ω1)

+C
(

1 +
1

µ

)

h2k2‖ϕ2‖2
Hk2+1(Ω2) + C

1

µ
h2k1‖p1‖2

Hk1 (Ω1)
+ Ch2k2‖pD‖2

Hk2+1(Ω2)
.

In addition, there exists a constant C independent of h such that

‖p1 − P1‖L2(Ω1) ≤ Chk1‖p1‖Hk1 (Ω1) + Chk1‖u1‖Hk1+1(Ω1) + Chk2(‖ϕ2‖Hk2+1(Ω2) + ‖pD‖Hk2+1(Ω2)).

5 Numerical examples

In the following examples, we consider the domain (0, 1)× (0, 2) divided into two subdomains by the interface
Γ12 = (0, 1) × {1}. The Navier-Stokes region is the top part Ω1 = (0, 1) × (1, 2) whereas the Darcy region is
the bottom part Ω2 = (0, 1) × (0, 1). We first verify our theoretical results by computing convergence rates
for known smooth solutions. The mini elements are used in the Navier-Stokes region and the discontinuous
piecewise linears are used in the Darcy region. We choose the SIPG method with a penalty parameter equal
to 1 everywhere.
Solution 1: For the model WA (with inertial forces), the exact solution is chosen as:

u1 = (y2−2y+2x, x2−x+2y), p1 = −x2y+xy+y2, p2 = 4−x2y+xy+y2+0.5((2x−1)2+(x2−x−2)2).

Solution 2: For the model WB (without inertial forces), the exact solution is similar. The pressure is slightly
modified:

u1 = (y2 − 2y + 2x, x2 − x + 2y), p1 = −x2y + xy + y2 − 4, p2 = x2 + xy + y2
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1/h ||P2 − p2||L2(Ω2) ||U1 − u1||L2(Ω1) ||P1 − p1||L2(Ω1) ||D(U1 − u1)||L2(Ω1) ||U2 − u2||L2(Ω2)

2 1.054 ×10−1 6.426×10−2 3.271 ×10−1 2.793 ×10−1 3.547 ×10−1

4 2.592 ×10−2 1.598 ×10−2 6.640 ×10−2 1.367 ×10−1 1.643 ×10−1

8 6.417 ×10−3 4.001 ×10−3 2.047 ×10−2 6.794 ×10−2 7.911 ×10−2

16 1.594 ×10−3 1.000 ×10−3 6.658 ×10−3 3.390 ×10−2 3.896 ×10−2

32 3.970 ×10−4 2.499 ×10−4 2.304 ×10−3 1.594 ×10−2 1.961 ×10−2

rate 2.00 2.00 1.53 1.00 1.00

Table 1: Numerical errors and convergence rates for solution 1 and the choice k2 = 1.

1/h ||P2 − p2||L2(Ω2) ||U1 − u1||L2(Ω1) ||P1 − p1||L2(Ω1) ||D(U1 − u1)||L2(Ω1) ||U2 − u2||L2(Ω2)

2 1.052 ×10−1 6.426×10−2 3.345 ×10−1 2.793 ×10−1 3.507 ×10−1

4 2.598 ×10−2 1.598 ×10−2 6.889 ×10−2 1.366 ×10−1 1.625 ×10−1

8 6.418 ×10−3 3.998 ×10−3 2.909 ×10−2 6.794 ×10−2 7.811 ×10−2

16 1.592 ×10−3 9.989 ×10−4 6.754 ×10−3 3.390 ×10−2 3.841 ×10−2

32 3.963 ×10−4 2.495 ×10−4 2.248 ×10−3 1.694 ×10−2 1.907×10−2

rate 2.00 2.00 1.58 1.00 1.00

Table 2: Numerical errors and convergence rates for solution 2 and the choice k2 = 1.

Table 1 and Table 2 give the numerical rates for both models. We verify that our numerical rates correspond
to the theoretical results, namely O(h) for the Navier-Stokes velocity error in the gradient norm and for the
Darcy pressure error in the gradient norm. One of the benefits of using discontinuous Galerkin is that one
can easily increase the polynomial degree. We repeat the same experiments above and increase the polynomial
degree in the Darcy region to two. We choose the solution 1 and present the results in Table 3.We observe
that the solution is more accurate in the Darcy region as the polynomial degree increases. Furthermore, the
errors in the Darcy region locally converge faster than the errors in the Navier-Stokes region. We obtain a
rate of O(h2) for the pressure error in the gradient norm. Our global error estimates guarantee only the rate
O(h). We have observed similar results for the solution 2.

In the next example, we consider the following Dirichlet boundary conditions for the Navier-Stokes region:

u1 = (sin(πx), 0), on (0, 1) × {2},
u1 = (0, 0), on ({0} × (1, 2)) ∪ ({1} × (1, 2))

For the Darcy region, we assume zero Neumann boundary condition for the vertical boundaries and zero
Dirichlet boundary condition for the horizontal boundary. We use the mini elements for the Navier-Stokes
region and discontinuous polynomials of degree one for the Darcy region. The viscosity is chosen to be equal
to one. The mesh consists of a uniform triangularization of the domain with 8192 triangles. In Fig. 1, we show
the velocity streamlines obtained from the schemes W h

A and W h
B . They are almost identical to each other.

For a better comparison, we compute the difference between the two solutions. Fig. 2(a) shows the contours
of the difference between the two approximations of the x-component of the velocity field. We observe that

1/h ||P2 − p2||L2(Ω2) ||U1 − u1||L2(Ω1) ||P1 − p1||L2(Ω1) ||D(U1 − u1)||L2(Ω1) ||U2 − u2||L2(Ω2)

2 2.667 ×10−2 6.425×10−2 3.343 ×10−1 2.793 ×10−1 5.982 ×10−2

4 7.276 ×10−3 1.600 ×10−2 6.766 ×10−2 1.366 ×10−1 1.584 ×10−2

8 1.872 ×10−3 4.004 ×10−3 2.072 ×10−2 6.794 ×10−2 4.049 ×10−3

16 4.726 ×10−4 1.000 ×10−3 6.702 ×10−3 3.390 ×10−2 1.022 ×10−3

32 1.187 ×10−4 2.499 ×10−4 2.230 ×10−3 1.694 ×10−2 2.570 ×10−4

rate 2.00 2.00 1.58 1.00 2.00

Table 3: Numerical errors and convergence rates for solution 1 and the choice k2 = 2.
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the difference is very small, of the order 10−5. A similar comment can be made about the difference between
the two approximations of the y-component of the velocity field (see Fig. 2(b)). The difference between the
two approximations of the pressure is slightly larger, namely of the order 10−3.

Finally we repeat the same experiment but we set the fluid viscosity equal to 0.005. Fig. 4 shows the difference
between the approximations of the two models. Overall the difference is small, of the order 10−5. At some
localized areas near the interface, the difference increases to 10−3.

(a) (b)

Figure 1: Streamlines for the numerical velocity for the model without inertial forces (a) and with inertial
forces for viscosity equal to 1.

6 Conclusions

We define and analyze two model problems for the coupled system of Navier-Stokes and Darcy equations.
We formulate a method that combines the classical conforming finite element method for Navier-Stokes with
the discontinuous Galerkin method for Darcy. If inertial forces are included in the balance of forces across
the interface, existence of weak and numerical solutions is obtained unconditionally. Small data condition
is needed if one does not take into account inertial forces and in addition uniqueness is obtained locally.
Convergence of the discrete solution is proved with respect to the mesh size. The meshes on the interface can
be non-matching. This is an attractive feature if one implements the method using a domain decomposition
approach. From a numerical point of view, the two schemes yield similar solutions for the velocity with a
difference of very small value in the sup norm.
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Figure 2: Difference between the solutions obtained from the two models for viscosity equal to 1: (a) x-
component of velocity, (b) y-component of velocity and (c) pressure.
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(a) (b)

Figure 3: Streamlines for the numerical velocity for the model without inertial forces (a) and with inertial
forces for viscosity equal to 0.005.
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(b)
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Figure 4: Difference between the solutions obtained from the two models for viscosity equal to 0.005: (a)
x-component of velocity, (b) y-component of velocity and (c) pressure.
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