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Abstract

This paper considers a multilevel decoupling method for the coupled Navier–Stokes/Darcy model describing
a free flowing fluid over a porous medium. The method utilizes a sequence of meshes on which a low
dimensional fully coupled nonlinear problem is solved only on a very coarse initial mesh. On subsequent
finer meshes, the approximate solution in each flow region is obtained by solving a linear decoupled problem
and performing a correction step. The correction step in each domain is achieved by solving a linear
system that differs from the original decoupled system only in the right hand side. We prove optimal error
estimates and demonstrate that for a sequence of meshes with spacing hj = h2

j−1, the decoupling method is
computationally efficient and achieves the same order of approximation as the fully coupled method.

Keywords: Multilevel method, Navier-Stokes equations, Darcy’s law, Coupling interface conditions,
Decoupling techniques

1. Introduction

We consider a multilevel decoupling method for the Navier–Stokes/Darcy model. This model has a wide
range of applications in science and engineering in scenarios where a free flowing fluid moves over a porous
medium. This coupled problem has been studied extensively in the literature; see for example [14, 15, 18, 28–
31, 47, 49, 56] and references therein. We mention [28] for an overview of results on the coupled model
for approximations based on continuous finite elements (CG), [30, 49] for numerical schemes based on
discontinuous Galerkin finite elements (DG) and [18] for a multi-numerics scheme combining CG and DG
methods in the free flow and porous media domains, respectively.

The finite element discretization of the fully coupled Navier–Stokes/Darcy model leads to a large, sparse,
nonlinear and ill-conditioned algebraic system. Assembling and solving this non-linear system on large do-
mains is computationally expensive; therefore, the development of efficient decoupling techniques is impor-
tant not only for this problem, but also for other multi-physics couplings that may have the same general
form. Indeed, the numerical analysis of coupled problems continues to garner interest in the direction of
advancing computational models to be more sophisticated and physically relevant. A few examples include
coupled free flow with multiphase flow, coupled dual porosity with free flow modeling flow in shale oil reser-
voirs, multiscale flow in severe regimes and fluid flow interacting with poroelastic material. We refer the
reader to [8, 16, 24, 32, 33, 37, 60] for details on these topics.

The naturally decoupled structure of free flow and porous media flow domains means that the coupled
problem lends itself well to numerical techniques that decouple the large nonlinear problem into two smaller
subproblems in the respective subdomains. Domain decomposition methods for coupled (Navier–Stokes or
Stokes)/Darcy models have been considered for example in [1, 11–13, 25–27, 34]. This paper focusses on the
numerical analysis and implementation of a three step multiple mesh decoupling method. This technique
requires the solution of a small nonlinear coupled problem only on a very coarse mesh, then on subsequent
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finer meshes (up to a desired mesh size), the Navier–Stokes/Darcy model is decoupled into relatively smaller
subproblems in each domain. The numerical scheme considered in this work combines the continuous finite
element method in the free flow region and the DG method in the porous medium. This choice is motivated
by the fact that the regular finite element method is adequate for the free flow regimes considered and
DG method is numerically well suited to handle discontinuities that may arise in the porous medium [19].
The DG method also allows for easy implementation of high order approximations and satisfies local mass
balance which is an important property for numerical approximation of flow problems in the porous medium.

This multilevel decoupling has been applied to the Stokes/Darcy model in [9] using continuous finite
element methods. This method is a natural extension of the two-grid decoupling method considered for
example in [38, 46, 52, 57, 59, 61] for the Stokes/Darcy problem and in [10, 20, 22, 29, 39, 53, 60] for the
Navier–Stokes/Darcy problem. In the two-grid decoupling method, the fully coupled problem is solved on a
coarse grid of size h0, then on a fine grid of size h1 = h2

0 or h1 = h3
0 recently in [39], the problem is decoupled

into two smaller subproblems. The decoupling is achieved in one of two ways. A parallel approach in which
the solution to the fully coupled problem on the coarse mesh as boundary data on the interface for each
decoupled problem on the fine mesh. A sequential approach in which the Darcy problem is decoupled using
the coarse mesh free flow velocity and the Darcy pressure on the fine mesh is used as a boundary condition
for the decoupled free flow problem.

In this paper we consider a three step multilevel sequential decoupling scheme. The method starts with
the solution of a small nonlinear coupled problem on a coarse mesh, then on a sequence of finer meshes, the
problem is decoupled into two smaller subproblems. The coarse mesh free flow velocity is used as boundary
data on the interface for the porous media flow problem. The resulting solution to the decoupled Darcy
problem is then applied as boundary data on the interface for a modified linearized Navier–Stokes problem
in the free flow region. In the third stage, the decoupled solutions are corrected on the fine mesh by solving
linear systems that differ from the original decoupled problems only in the right hand side. The fine mesh
correction step improves the quality of the numerical solution in comparison to the widely studied two-grid
method. This correction has been applied to solve the Navier–Stokes problem in [22] and has recently been
applied to the two-grid decoupling method for the Navier–Stokes/Darcy problem in [39].

The use of a sequence of intermediate finer meshes in the multilevel method allows for a very coarse initial
mesh which means that one needs to solve a smaller nonlinear problem compared to the two-grid method.
Further, since the DG method is used to approximate the solution in the porous medium, the resulting
linear systems are larger compared to the continuous finite element method therefore the development of
efficient decoupling strategies is of interest.

Our numerical experiments demonstrate that this multi-mesh decoupling scheme can result in significant
computational savings for large problems. In addition, this technique has the potential to be extended to
adaptive mesh refinement techniques between mesh levels. Multilevel finite element methods have been
widely used in the literature; see for example [35, 36, 43–45, 58]. In this paper we extend the analysis and
implementation of the decoupled multilevel method in [9] to the nonlinear Navier–Stokes/Darcy case with
a fine mesh correction. We perform a numerical comparison of the multilevel method to the fully coupled
method in terms of accuracy and CPU times.

The paper is organized as follows. The fully coupled model and the corresponding finite element dis-
cretization are introduced in Sections 2 and 3, respectively. We introduce the multilevel finite element
method and prove the convergence of the method in Sections 4 and 5. In Section 6 we provide numerical
examples to demonstrate the convergence, robustness with respect to physical parameters and effectiveness
in comparison to the fully coupled method. Conclusions follow.

2. Coupled Navier–Stokes/Darcy Model

Let Ω ∈ R2 be a bounded polygonal domain partitioned into two non-overlapping subdomains Ω1 and
Ω2; for the free flow and porous media flow regions, respectively. The subdomains Ω1 and Ω2 are separated
by a polygonal interface Γ12. We denote the boundary of the free flow region by Γ1 = ∂Ω ∩ ∂Ω1. The
boundary of the porous medium (Γ2 = ∂Ω∩∂Ω2) is partitioned into disjoint sets Γ2D and Γ2N, the Dirichlet
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and Neumann boundary edges, respectively, with the condition |Γ2D| > 0. We recall the equations governing
the flow in each domain. The flow in Ω1 is described by the Navier–Stokes equations

−∇ · (2νD(u)− pI) + u · ∇u = f1, in Ω1, (2.1a)

∇ · u = 0, in Ω1, (2.1b)

u = 0, on Γ1. (2.1c)

The variables u and p denote the Navier–Stokes velocity and pressure, respectively. The coefficient ν is the
kinematic viscosity of the fluid, the function f1 is the external force acting on the free fluid and D(u) is
the rate of strain matrix

D(u) =
1

2
(∇u+ uT ).

The flow in the porous medium is governed by Darcy’s Law

−∇ ·K∇φ = f2, in Ω2, (2.2a)

φ = 0, on Γ2D, (2.2b)

K∇φ · n2 = gN, on Γ2N. (2.2c)

The fluid velocity and pressure in Ω2 are denoted by u2 and φ, respectively. We consider a numerical
approximation of the Darcy pressure φ; with the Darcy velocity u2 obtained by a post processing step by
numerically differentiating the pressure as

u2 = −K∇φ.

The function f2 is the external force acting on the fluid and gN is the prescribed flux. The vector n2 denotes
the unit vector normal to Γ2 and the coefficient K is a symmetric positive definite tensor representing the
hydraulic conductivity of the porous medium. We define K = kI for a real constant k, modelling isotropic
flow in the porous medium. The coupled model is completed by specifying the following interface conditions
on Γ12

u · n12 = −K∇φ · n12, (2.3a)

u · τ 12 = −2νG(D(u)n12) · τ 12, (2.3b)

φ = ((−2νD(u) + pI)n12) · n12, (2.3c)

where n12 directed from Ω1 to Ω2 and τ 12 are the unit normal and tangent vectors on Γ12, respectively. The
interface conditions (2.3a)-(2.3c) are the continuity of the normal component of the velocity, the Beavers-
Joseph-Saffman law [7, 40, 51] and the balance of forces, respectively. In (2.3b), G is a constant that
depends on the nature of the porous medium. The standard weak formulation of (2.1a)-(2.1c), (2.2a)-(2.2c)
and (2.3a)-(2.3c) reads

Find (u, p, φ) ∈ (X1,M1,M2) s.t.

∀v1 ∈X1,∀q2 ∈M2, 2ν
(
D(u),D(v1)

)
Ω1

+
(
u · ∇u,v1

)
Ω1

−
(
p,∇ · v1

)
Ω1

+
1

G

(
u · τ 12,v1 · τ 12

)
Γ12
−
(
u · n12, q2

)
Γ12

(2.4a)

+(φ,v1 · n12)Γ12
+
(
K∇φ,∇q2)Ω2

=
(
f1, v1

)
Ω1

+
(
f2, q2

)
Ω2

+
(
gN, q2

)
Γ2N

,

∀q1 ∈M1, (∇ · u, q1)Ω1
= 0, (2.4b)

where X1,M1 and M2 are the Navier–Stokes velocity, pressure and Darcy pressure function spaces, respec-
tively. We list the spaces

X1 = {v1 ∈ (H1(Ω1))2 : v1 = 0 on Γ1},
M1 = L2(Ω1),

M2 = {q2 ∈ H1(Ω2) : q2 = 0 on Γ2D}.

We refer the reader to [18] for details of the derivation and analysis of the weak formulation (2.4a)-(2.4b).
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3. Finite element discretization

Let Eh = Eh1 ∪ Eh2 be a regular [21] triangulation of the subdomains Ω1 ∪ Ω2 dependent on a mesh
parameter h. The Navier–Stokes velocity and pressure in Ω1 are approximated by conforming finite element
spaces Xh

1 ⊂X1 and Mh
1 ⊂M1, respectively, satisfying the discrete inf-sup stability condition

inf
q1∈Mh

1

sup
v1∈X

h

1

(q1,∇ · v1)Ω1

||∇v1||L2(Ω1)||q1||L2(Ω1)
≥ β? > 0 (3.1)

where β? is a constant. The free flow velocity and pressure are approximated using the first order MINI
element [5]. The Darcy pressure is approximated by the space of discontinuous polynomials of degree k2

Mh
2 = {q2 ∈ L2(Ω2) : ∀E ∈ Eh2 , q2|E ∈ Pk2(E)}.

Following the standard DG notation in Eh2 , we denote the interior edges of Eh2 by Γh
2 and associate each edge

with a unit normal vector ne. In the case of boundary edges ne is taken to be the outward normal vector.
For interior edges with neighbors Ee

i and Ee
j , there are two traces of q2 along e. For a given ne pointing

from Ee
i to Ee

j we denote the average {q2} and jump [q2] of a piecewise discontinuous polynomial q2 by

{q2} =
1

2
(q2|Ee

i
) +

1

2
(q2|Ee

j
), [q2] = (q2|Ee

i
)− (q2|Ee

j
), ∀e = ∂Ee

i ∩ ∂Ee
j .

The space Mh
2 is equipped with the standard DG norm

∀q2 ∈Mh
2 , ||q2||DG =

( ∑
E∈Eh2

||K1/2∇q2||2L2(E) +
∑
e∈Γ2

h

1

|e|
||[q2]||2L2(e)

)1/2

.

We refer the reader to [48] for details of the DG method. The multinumerics scheme combining the contin-
uous and discontinuous finite element methods has been shown to be well suited to capture both the flow in
the Navier–Stokes region and in porous media that may contain discontinuities in the hydraulic conductiv-
ity [19]. The use of a multi-numerics scheme also serves to illustrate the flexibility of the decoupling scheme.
Specifically, optimized numerical schemes for each decoupled problem may be used in each subdomain.

For compactness, we introduce the following bilinear and trilinear forms representing discretizations of
terms in the coupled weak formulation (2.4a)-(2.4b). The discretization of the Navier–Stokes viscous term
and pressure terms are denoted by aNS and bNS, respectively:

∀v,w ∈ Xh
1 , aNS(v,w) = 2ν(D(v),D(w))Ω1

,

∀v ∈ Xh
1 ,∀q1 ∈Mh

1 , bNS(v, q1) = −(q1,∇ · v)Ω1
. (3.2)

The discretization of the nonlinear term is denoted by cNS

∀z, v,w ∈ Xh
1 ,

cNS(z, v,w) =
1

2
(z · ∇v,w)Ω1 −

1

2
(z · ∇w, v)Ω1 +

1

2
(z · n12, v ·w)Γ12 . (3.3)

The discretization of the diffusion term in the Darcy equations is denoted by the bilinear form aD

∀q2, t2 ∈Mh
2 , aD(q2, t2) =

∑
E∈Eh2

(
K∇q2,∇t2

)
E
−
∑
e∈Γh

2

(
{K∇q2 · ne}, [t2]

)
e

+ε
∑
e∈Γ2

h

(
{K∇t2 · ne}, [q2]

)
e

+
∑
e∈Γ2

h

σe
|e|
(
[q2], [t2]

)
e
. (3.4)

In the definition of aD we use the interior penalty discontinuous Galerkin method [4, 6, 23, 50, 55]. The
parameter ε ∈ {−1, 0, 1} and σe ≥ 0 is a penalty parameter that varies with respect to the edge in Eh2 . The
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bilinear form aD is coercive and corresponds to the nonsymmetric interior penalty Galerkin method (NIPG)
(ε = 1), symmetric interior penalty Galerkin method (SIPG) (ε = −1) or the incomplete interior penalty
Galerkin method (IIPG) (ε = 0) methods. The terms involving interface coupling are defined by γ12

∀v,w ∈Xh
1 ∀q2, t2 ∈Mh

2 ,

γ12(v, q2;w, t2) =
(
q2,w · n12

)
Γ12

+
1

G

(
v · τ 12,w · τ 12

)
Γ12
−
(
v · n12, t2

)
Γ12
.

We define the linear form L to incorporate the source and data terms

∀v ∈Xh
1 , ∀q2 ∈Mh

2 ,

L(v, q2) =
(
f1, v

)
Ω1

+ (f2, q2)Ω2
+
∑

e∈Γ2N

(gN, q2)e.

On a mesh of size h, the finite element discretization of the fully coupled Navier–Stokes/Darcy problem
reads

Find (Uh, Ph, φh) ∈ (Xh
1 ,M

h
1 ,M

h
2 ) s.t. ∀v1 ∈Xh

1 , ∀q2 ∈Mh
2 ,

aNS(Uh,v1) + bNS(v1, P
h) + cNS(Uh;Uh,v1) (3.5a)

+aD(φh, q2) + γ12(Uh, φh;v1, q2) = L(v1, q2),

∀q1 ∈Mh
1 , bNS(Uh, q1) = 0. (3.5b)

The convergence of successive iterative schemes for the coupled Navier–Stokes/Darcy problem has been
shown in [30]. We solve the nonlinear system, (3.5a)-(3.5b) using the following Newton linearization scheme
starting with an initial guess Uh

0 = 0 and a stopping criterion ||Uh
n −U

h
n−1||L2(Ω1) < 10−9 as follows

Find (Uh
n, P

h
n , φ

h
n) ∈ (Xh

1 ,M
h
1 ,M

h
2 ) s.t. ∀v1 ∈Xh

1 ,∀q2 ∈Mh
2 ,

aNS(Uh
n,v1) + bNS(v1, P

h
n ) + cNS(Uh

n−1;Uh
n,v1)

+cNS(Uh
n;Uh

n−1,v1) + aD(φhn, q2) (3.6a)

+γ12(Uh
n, φ

h
n;v1, q2) = L(v1, q2) + cNS(Uh

n−1;Uh
n−1,v1),

∀q1 ∈Mh
1 , bNS(Uh

n, q1) = 0. (3.6b)

Since the solution of the fully coupled problem is computed on a single mesh, we will refer to it as the
one-level method. We note that each iteration in (3.6a)-(3.6b) requires the solution of a large, coupled,
ill-conditioned algebraic system that presents a numerical challenges to solve. This makes the decoupling
schemes attractive as they result in relatively smaller systems on each domain.

4. Multilevel finite element method

In this section we describe the three step multilevel finite element method for the coupled Navier–
Stokes/Darcy system. We consider a sequence of J + 1 meshes with spacing hj , j = 0, 1, . . . , J such that

h0 > h1 > · · · > hJ . For each mesh of size hj , let Xhj ,M
hj

1 and M
hj

2 be the finite element spaces
corresponding to the Navier–Stokes velocity, pressure and Darcy pressure, respectively for each mesh size
hj with

(Xh0
1 ×M

h0
1 ×M

h0
2 ) ⊂ (Xh1

1 ×M
h1
1 ×M

h1
2 ) ⊂ · · · ⊂ (XhJ

1 ×M
hJ
1 ×MhJ

2 ).

The (J + 1)-level method begins by solving the fully coupled nonlinear problem, (3.5a)-(3.5b) on a coarse
mesh with size h0, then on a sequence of finer grids of mesh size hj (for 1 ≤ j ≤ J), two smaller problems are

solved in each subdomain. First, a Darcy problem to obtain the approximate Darcy pressure φ∗hj
∈ Mhj

2 ,

5



using the Navier–Stokes velocity Uhj−1 ∈ Xhj−1 as a boundary condition on the interface. Second, a
Navier–Stokes problem linearized about Uhj−1 with the Darcy decoupled solution φ∗hj

applied as boundary

data on the interface to obtain (U∗hj
, P ∗hj

). The approximate solutions are interpolated between mesh levels.
The third step of the method corrects the Darcy pressure solution φ∗hj

by using the Navier–Stokes velocity

U∗hj
and finally the Navier–Stokes velocity and pressure are corrected using φhj

on the interface to obtain
(Uhj

, Phj
). We note that the correction problems differ from the decoupled problems in the right hand side

and thus are not computationally expensive. The multilevel decoupled method is summarized below.

Fully coupled step on mesh h0

Step 1. Solve a small fully coupled nonlinear problem on coarsest mesh h0

Find (Uh0 , Ph0 , φh0) ∈ (Xh0
1 ×M

h0
1 ×M

h0
2 ) s.t. ∀v ∈Xh0

1 ,∀q2 ∈Mh0
2 ,

aNS(Uh0 ,v1) + bNS(v1, P
h0) + cNS(Uh0 ;Uh0 ,v1)

+γ12(Uh0 , φh0
2 ;v1, q2) + aD(φh0 , q2) = L(v1, q2) (4.1a)

∀q1 ∈Mh0
1 , bNS(Uh0 , q1) = 0. (4.1b)

Decoupling steps on a sequence of meshes hj , 1 ≤ j ≤ J

Step 2. Solve two decoupled problems on mesh hj

(i) Darcy problem with Uhj−1 as boundary data on Γ12 :

Find φ∗hj
∈Mhj

2 s.t. ∀q2 ∈M
hj

2 ,

aD(φ∗hj
, q2) = (f2, q2)Ω2 + (Uhj−1 · n12, q2)Γ12 +

∑
e∈Γ2N

(gN, q2)e. (4.2)

(ii) Navier–Stokes problem linearized about Uhj−1
with φ∗hj

as boundary data on Γ12 :

Find (U∗hj
, P ∗hj

) ∈ (X
hj

1 ,M
hj

1 ) s.t. ∀v1 ∈X
hj

1 ,∀q1 ∈M
hj

1 ,

aNS(U∗hj
,v1) + bNS(v1, P

∗
hj

) + cNS(Uhj−1
;U∗hj

,v1)

+cNS(U∗hj
;Uhj−1

,v1) +
1

G

(
U∗hj

· τ 12,v1 · τ 12

)
Γ12

(4.3a)

= (f1,v1)Ω1 + cNS(Uhj−1 ;Uhj−1 ,v1)− (φ∗hj
,v1 · n12)Γ12

∀q1 ∈Mh
1 , bNS(U∗hj

, q1) = 0. (4.3b)

Step 3. Solve two correction subproblems on mesh hj

(i) Darcy problem with U∗hj
as boundary data on Γ12 :

Find φhj
∈Mhj

2 s.t. ∀q2 ∈M
hj

2 ,

aD(φhj , q2) = (f2, q2)Ω2 + (U∗hj
· n12, q2)Γ12 +

∑
e∈Γ2N

(gN, q2)e. (4.4)
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(ii) Correct Navier–Stokes velocity and pressure with φhj as boundary data on Γ12 :

Find (Uhj
, Phj

) ∈ (X
hj

1 ,M
hj

1 ) s.t. ∀v1 ∈X
hj

1 ,∀q1 ∈M
hj

1 ,

aNS(Uhj
,v1) + bNS(v1, Phj

) + cNS(Uhj−1
;Uhj

,v1)

+cNS(Uhj
;Uhj−1

,v1) +
1

G

(
Uhj

· τ 12,v1 · τ 12

)
Γ12

(4.5a)

= (f1,v1)Ω1
+ cNS(Uhj−1

;U∗hj
,v1) + cNS(U∗hj

,Uhj−1
−U∗hj

,v1)− (φhj
,v1 · n12)Γ12

∀q1 ∈Mh
1 , bNS(Uhj , q1) = 0. (4.5b)

Remark 1. We note that Step 2 can also be implemented in parallel by using the Darcy pressure from the
coarse mesh φhj−1

on the interface in (4.3a). This form of the decoupling scheme has been widely used in
the literature. Optimal convergence results for the parallel two-grid Stokes/Darcy decoupling can be found
in [38]. In this work, we choose the decoupling technique analyzed in [41, 53, 57, 61] and use φ∗hj

as a
boundary condition for the fluid region due to a sequential code. In addition, our numerical tests indicate
that this approach yields a more accurate solution.

5. Stability and Convergence analysis

In this section we prove the stability and convergence for the multilevel method and establish the ap-
propriate mesh spacing that ensures that the decoupling method converges with the same order as the fully
coupled approach. In the following analysis we assume that the velocity and pressure are approximated
by inf-sup stable first order MINI element and the Darcy pressure is approximated by linear discontinuous
elements. We begin by recalling the Poincaré and Korn’s inequalities and trace and Sobolev inequalities
– there exist constants P1, C0, C1, C2 depending on Ω1 and P2, C3, C4 depending on Ω2 such that for all
v ∈Xh

1 ,

||v||L2(Ω1) ≤ P1|v|H1(Ω1), ||v||L2(Γ12) ≤ C0|v|H1(Ω1), |v|H1(Ω1
≤ C1||D(v)||L2(Ω1), (5.1)

and for q2 ∈Mh
2 ,

||q2||L2(Ω2) ≤ P2||q2||DG, ||q2||L2(Γ12) ≤ C2||q2||DG, ||q2||L2(Γ2N) ≤ C3||q2||DG. (5.2)

We also state the following results on the continuity of the bilinear form cNS, stability and convergence of
the numerical solution to the fully coupled Navier–Stokes/Darcy problem, (3.5a)-(3.5b) and coercivity of aD

and refer the reader to [4, 6, 17, 18, 23, 30, 50, 54, 55] for proofs.

Lemma 1. Assuming the domain Ω1 is of class C1 and regular enough, the trilinear form cNS defined
in (3.3) is continuous. There exists a constant C4 depending on Ω1 such that

cNS(z1;v1,w1) ≤ C4


||D(z1)||L2(Ω1)||D(v1)||L2(Ω1)||D(w1)||L2(Ω1) ∀z1,v1,w1 ∈Xh

1

||z1||L2(Ω1)||D(v1)||L2(Ω1)||w1||H2(Ω1) ∀z1,v1 ∈Xh
1 ,w1 ∈ H2(Ω1)

||D(z1)||L2(Ω1)||v1||L2(Ω1)||w1||H2(Ω1) ∀z1,v1 ∈Xh
1 ,w1 ∈ H2(Ω1)

(5.3)

Lemma 2. The bilinear form aD defined in (3.4) is coercive. There exists a constant κ > 0 independent of
hj such that

∀q2 ∈Mh
2 , κ||q2||2DG ≤ aD(q2, q2)
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Lemma 3. Let (Uh, Ph, φh) ∈ (Xh
1 ,M

h
1 ,M

h
2 ) be the solution from the fully coupled scheme (3.5a)-(3.5b).

Then under the assumption of a small data condition there exists a constant C independent of h such that

||D(u−Uh)||L2(Ω1) + ||p− Ph||L2(Ω1) + ||φ− φh||DG ≤ Ch
||(u−Uh)||L2(Ω1) + ||φ− φh||L2(Ω2) ≤ Ch2

In addition, the following stability bound holds:

2ν||D(Uh)||2L2(Ω1) + κ||φh||2DG ≤ R2

where R depends on the Navier–Stokes and Darcy data functions, Poincaré, Korn, Sobolev and trace in-
equalities.

We begin with the stability and convergence of the two-level method and extend to the multilevel method
by induction. The stability of the two-grid Stokes–Darcy solution has been shown in [61], here we extend to
the nonlinear Navier-Stokes/Darcy case. For simplicity we consider the homogeneous boundary condition
on Γ2D in Ω2, the non-homogeneous case can be handled by the usual lift argument. We will use C to denote
arbitrary constants independent of h.

Lemma 4. Let (U∗h1
, P ∗h1

, φ∗h1
), (Uh1

, Ph1
, φh1

) ∈ (Xh1
1 ,Mh1

1 ,Mh1
2 ) be the solutions to (4.2)-(4.3b) and

(4.4)-(4.5b), respectively i.e. the two-level method with coarse mesh h0 and fine mesh h1, then under the
condition

ν
3
2 >
√

2C4R (5.4)

the velocity and pressure solutions satisfy

κ||φ∗h1
||2DG ≤ (D∗1)2 (5.5a)

2ν||D(U∗h1
)||2L2(Ω1) ≤ (N ∗1 )2 (5.5b)

κ||φh1
||2DG ≤ D2

1, (5.5c)

2ν||D(Uh1)||2L2(Ω1) ≤ N
2
1 , (5.5d)

where R is the constant in Lemma 3 and

D∗1 =

[
3

κ

(
P2

2 ||f2||2L2(Ω2) + (C0C1C2)2R2

2ν
+ C2

3 ||gN||2L2(Γ2N)

)] 1
2

N ∗1 =

[
3

ν

(
(P1C1)2||f1||2L2(Ω1) + C2

4

R4

4ν2
+ (C0C1C2)2 (D∗1)2

κ

)] 1
2

.

D1 =

[
3

κ

(
P2

2 ||f2||2L2(Ω2) + (C0C1C2)2 (N ∗1 )2

2ν
+ C2

3 ||gN||2L2(Γ2N)

)] 1
2

N1 =

[
3

ν

(
(P1C1)2||f1||2L2(Ω1) +

{
C4
N ∗1√

2ν

(
R√
2ν

+ ||D(Uh0 −U
∗
h1

)||L2(Ω1)

)}2

+ (C0C1C2)2D2
1

κ

)] 1
2

.

Further, if h1 = h2
0 then we have the following error bounds

||φ− φ∗h1
||DG ≤ C(h2

0 + h1) ≤ Ch1, (5.6a)

||D(u−U∗h1
)||L2(Ω1) + ||p− P ∗h1

||L2(Ω1) ≤ C(h2
0 + h1) ≤ Ch1, (5.6b)

||u−U∗h1
||L2(Ω1) ≤ C(h3

0 + h2
1) ≤ Ch

3
2
1 . (5.6c)

||φ− φh1 ||DG ≤ C(h3
0 + h1) ≤ Ch1, (5.7a)

||D(u−Uh1
)||L2(Ω1) + ||p− Ph1

||L2(Ω1) ≤ C(h3
0 + h1) ≤ Ch1. (5.7b)

||u−Uh1
||L2(Ω1) ≤ C(h4

0 + h2
1) ≤ Ch2

1. (5.7c)
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Proof. Starting with Step 2 of the two-grid decoupling method. We choose q2 = φ∗h1
in (4.2) so that

aD(φ∗h1
, φ∗h1

) = (f2, φ
∗
h1

)Ω2
+ (Uh0

· n12, φ
∗
h1

)Γ12
+
∑

e∈Γ2N

(gN, φ
∗
h1

)e. (5.8)

We bound the terms in (5.8); using Cauchy–Schwarz and Young’s inequalities and inequalities in (5.1)-(5.2).
Indeed, ∣∣(f2, φ

∗
h1

)Ω2

∣∣ ≤ 3

2κ
P2

2 ||f2||2L2(Ω2) +
κ

6
||φ∗h1

||2DG, (5.9a)∣∣(Uh0 · n12, φ
∗
h1

)Γ12

∣∣ ≤ 3

2κ
(C0C1C2)2||D(Uh0)||2L2(Ω1) +

κ

6
||φ∗h1

||2DG, (5.9b)∣∣(gN, φ
∗
h1

)Γ12

∣∣ ≤ 3

2κ
C2

3 ||gN||2L2(Γ2N) +
κ

6
||φ∗h1

||2DG. (5.9c)

Combining Lemma 2 and the bounds (5.9a)-(5.9c) in (5.8) it follows that

κ

2
||φ∗h1

||2DG ≤
3

2κ

(
P2

2 ||f2||2L2(Ω2) + (C0C1C2)2||D(Uh0
)||2L2(Ω1) + C2

3 ||gN||2L2(Γ2N)

)
. (5.10)

We obtain (5.5a) by recalling that Uh0
= Uh0 and using Lemma 3 to bound Uh0

in (5.10).
Similarly for the stability of the Navier–Stokes velocity we choose (v1, q1) = (U∗h1

, P ∗h1
) in (4.3a)-(4.3b)

to obtain

aNS(U∗h1
,U∗h1

) + cNS(Uh0
;U∗h1

,U∗h1
) + cNS(U∗h1

;Uh0
,U∗h1

) +
1

G

(
U∗h1

· τ 12,U
∗
h1
· τ 12

)
Γ12

= (f1,U
∗
h1

)Ω1 + cNS(Uh0 ;Uh0 ,U
∗
h1

)− (φ∗h1
,U∗h1

· n12)Γ12 . (5.11)

Using Lemma 1 and Young’s inequality we bound the nonlinear terms in (5.11) as∣∣cNS(Uh0
;U∗h1

,U∗h1
) + cNS(U∗h1

;U∗h0
,U∗h1

)
∣∣ ≤ C4||D(Uh0

)||L2(Ω1)||D(U∗h1
)||2L2(Ω1), (5.12a)∣∣cNS(Uh0 ;Uh0 ,U

∗
h1

)
∣∣ ≤ 3

4ν
C2

4 ||D(Uh0
)||4L2(Ω1) +

ν

3
||D(U∗h1

)||2L2(Ω1). (5.12b)

Similarly using (5.1)-(5.2) we bound the rest of the terms in (5.11) as∣∣(f1,U
∗
h1

)Ω1

∣∣ ≤ 3

4ν
(P1C1)2||f1||2L2(Ω1) +

ν

3
||D(U∗h1

)||2L2(Ω1) (5.13a)∣∣(φ∗h1
,U∗h1

· n12)Γ12

∣∣ ≤ 3

4ν
(C0C1C2)2||φ∗h1

||2DG +
ν

3
||D(U∗h1

)||2L2(Ω1). (5.13b)

Using Lemma 3 to bound Uh0
in (5.12a) and combining the bounds (5.12a)-(5.13b) in (5.11) yields(

ν − C4
R√
2ν

)
||D(U∗h1

)||2L2(Ω1) ≤
3

4ν

(
(P1C1)2||f1||2L2(Ω1) + C2

4 ||D(Uh0
)||4L2(Ω1) + (C0C1C2)2||φ∗h1

||2DG

)
(5.14)

Thus (5.5b) follows from the small data condition (5.4) and (5.5a) applied to (5.14).
The stability bounds for step 3 follow in the similar manner. Choosing q2 = φh1

in (4.4) and bounding
the resulting terms as in (5.9a)-(5.9c) yields

κ

2
||φh1 ||2DG ≤

3

2κ

(
P2

2 ||f2||2L2(Ω2) + (C0C1C2)2||D(U∗h1
)||2L2(Ω1) + C2

3 ||gN||2L2(Γ2N)

)
. (5.15)

Therefore (5.5c) follows by using (5.5b) to bound U∗h1
.
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For the Navier-Stokes velocity bound we choose (v1, q1) = (Uh1 , Ph1) in (4.5a)-(4.5b) yields

aNS(Uh1
,Uh1

) + cNS(Uh0
;Uh1

,Uh1
) + cNS(Uh1

;Uh0
,Uh1

) +
1

G

(
Uh1

· τ 12,Uh1
· τ 12

)
Γ12

= (f1,Uh1
)Ω1

+ cNS(Uh0
;U∗h1

,Uh1
) + cNS(U∗h1

;Uh0
−U∗h1

,Uh1
)− (φh1

,Uh1
· n12)Γ12

. (5.16)

The nonlinear terms on the left hand side are treated as in (5.12a)-(5.12b). We bound the new nonlinear
terms in the right-hand side of (5.16) as follows∣∣cNS(Uh0 ;U∗h1

,Uh1) + cNS(U∗h1
;Uh0 −U

∗
h1
,Uh1)

∣∣
≤ C4||D(U∗h1

)||L2(Ω1)

{
||D(Uh0)||L2(Ω1) + ||D(Uh0

−U∗h1
)||L2(Ω1)

}
||D(Uh1

)||L2(Ω1) (5.17)

≤ 3

4ν

[
C4||D(U∗h1

)||L2(Ω1)

{
||D(Uh0)||L2(Ω1) + ||D(Uh0 −U

∗
h1

)||L2(Ω1)

}]2

+
ν

3
||D(Uh1)||2L2(Ω1).

and treat the rest of the terms in (5.16) in a manner similar to (5.11) to obtain(
ν − C4

R√
2ν

)
||D(Uh1)||2L2(Ω1) ≤

3

4ν

(
(P1C1)2||f1||2L2(Ω1) (5.18)

+

[
C4||D(U∗h1

)||L2(Ω1)

{
||D(Uh0)||L2(Ω1) + ||D(Uh0 −U

∗
h1

)||L2(Ω1)

}]2

+ (C0C1C2)2||φh1 ||2DG

)
The result (5.5d) follows from Lemma 3, (5.5b)-(5.5c) and the condition (5.4).

The proof the convergence results (5.6a)-(5.6b) and (5.7a)-(5.7b) are similar to the convergence of the
two-grid method in [41, 53]. We refer the reader to [39] for a proof (5.6c) and (5.7c).

We proceed to the multilevel method. We begin by proving the stability and convergence of Step 2 of the
decoupling scheme.

Theorem 5. Under the assumptions of Lemma 4, the solution of stage 2 of the multilevel decoupled scheme
((J + 1)− level method), (4.2), (4.3a)-(4.3b) with j ≥ 1 is stable

κ||φ∗hj
||2DG ≤ (D∗j )2 (5.19a)

2ν||D(U∗hj
)||2L2(Ω1) ≤ (N ∗j )2 (5.19b)

where

D∗j =

[
3

κ

(
P2

2 ||f2||2L2(Ω2) + (C0C1C2)2
N 2

j−1

2ν
+ C2

3 ||gN||2L2(Γ2N)

)] 1
2

,

N ∗j =

[
3

ν

(
(P1C1)2||f1||2L2(Ω1) + C2

4

N 4
j−1

4ν2
+ (C0C1C2)2

(D∗j )2

κ

)] 1
2

.

Further, if the condition hj = h2
j−1 holds then there exists a constant C independent of hj such that

||φ− φ∗hj
||DG ≤ C(h2

j−1 + hj) ≤ Chj , (5.20a)

||D(u−U∗hj
)||L2(Ω1) + ||p− P ∗hj

||L2(Ω1) ≤ C(h2
j−1 + hj) ≤ Chj . (5.20b)

||u−U∗hj
||L2(Ω1) ≤ C(h3

j−1 + h2
j ) ≤ Ch

3
2
j . (5.20c)
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Proof. Theorem 5 will be proved by induction. First, we note that Lemma 4 shows that Theorem 5 is
true for j = 1. We assume that Theorem 5 holds for j = m, with 1 ≤ m ≤ J − 1, specifically the following
conditions hold

κ||φ∗hm
||DG ≤ (D∗m)2 and κ||φhm ||DG ≤ (Dm)2, (5.21a)

2ν||D(U∗hm
)||2L2(Ω1) ≤ (N ∗m)2 and 2ν||D(Uhm

)||2L2(Ω1) ≤ (Nm)2, (5.21b)

under the condition

ν
3
2 >
√

2C4Nm (5.22)

along with the convergence results (5.6a)-(5.7c) for j = m. We show that Theorem 5 holds for j = m+ 1.
We begin with the stability of the Darcy pressure by choosing q2 = φ∗hm+1

in (4.2) and using inequalities

in (5.1)-(5.2) and Lemma 2 it follows that

κ||φ∗hm+1
||2DG ≤

3P2
2

κ
||f2||2L2(Ω2) +

3(C0C1C2)2

κ
||D(Uhm

)||2L2(Ω1) +
3C2

3

κ
||gN||2L2(Γ2N). (5.23)

Therefore the Darcy pressure bound (5.19a) follows for j = m + 1 from the induction assumption (5.21b)
applied to (5.23). Similarly, by selecting (v1, q1) = (U∗hm+1

, P ∗hm+1
) in (4.3a)-(4.3b) we obtain(

ν − C4
Nm√

2ν

)
||D(U∗hm+1

)||2L2(Ω1) ≤

3

4ν

(
(P1C1)2||f1||2L2(Ω1) + C2

4 ||D(Uhm
)||4L2(Ω1) + (C0C1C2)2||φ∗hm+1

||2DG

)
(5.24)

Thus the velocity bound (5.19b) follows for j = m+ 1 from applying (5.19a) and (5.21b) to (5.24).
For the error analysis, we first recall that from the definition of the trilinear form it is easy to verify that

if (Uhm+1 ,Uhm
,v1) ∈ [H1(Ω1)]3 then the following identity holds; see e.g. [42]

cNS(Uhm+1 ;Uhm+1 ,v1) = cNS(Uhm ;Uhm+1 ,v1) + cNS(Uhm+1 ;Uhm ,v1)

−cNS(Uhm ;Uhm ,v1) + cNS(Uhm+1 −Uhm ;Uhm+1 −Uhm ,v1), (5.25)

where Uhm+1 and Uhm
are the solutions from the fully coupled scheme at mesh level m+ 1 and multilevel

method at mesh level m, respectively. We replace the nonlinear term in the fully coupled problem (3.5a)-
(3.5b) using the identity (5.25) and take the difference with the decoupled problems (4.2) ,(4.3a)-(4.3b) to
obtain

∀v1 ∈Xhm+1

1 ,∀q1 ∈Mhm+1

1 , q2 ∈Mhm+1

2 ,

aNS

(
Uhm+1 −U∗hm+1

,v1

)
+ bNS

(
v1, P

hm+1 − P ∗hm+1

)
+ cNS

(
Uhm ;Uhm+1 −U∗hm+1

,v1

)
+cNS

(
Uhm+1 −U∗hm+1

;Uhm ,v1

)
+ aD(φhm+1 − φ∗hm+1

, q2) (5.26a)

+
1

G

(
(Uhm+1 −U∗hm+1

) · τ 12,v1 · τ 12

)
Γ12

=
(
φ∗hm+1

− φhm+1 ,v1 · n12

)
Γ12

+
(
(Uhm+1 −Uhm) · n12, q2

)
Γ12
− cNS

(
Uhm+1 −Uhm ;Uhm+1 −Uhm ,v1

)
∀q1 ∈Mh

1 , bNS

(
U∗hm+1

−Uhm+1 , q1

)
= 0. (5.26b)

Setting (v1, q1) = 0 and q2 = φhm+1 − φ∗hm+1
in (5.26a)-(5.26b), it follows from arguments similar to the

analysis of the multilevel Stokes/Darcy method in [9] that

||φhm+1 − φ∗hm+1
||DG ≤ C

{
hm||D(Uhm+1 −Uhm

)||L2(Ω1) + ||Uhm+1 −Uhm
||L2(Ω1)

}
(5.27a)

≤ C
{
hm(hm+1 + hm) + h2

m+1 + h2
m

}
≤ Ch2

m, (5.27b)
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Here, (5.27b) is obtained by applying the triangular inequality to each error term in (5.27a) and applying
Lemma 3, the induction hypothesis ((5.7b)-(5.7c) for j = m) and dropping high order terms.

For the velocity error we proceed by choosing v1 = Uhm+1 − U∗hm+1
, q1 = Phm+1 − P ∗hm+1

and q2 = 0

in (5.26a)-(5.26b) yielding

2ν||D(Uhm+1 −U∗hm+1
)||2L2(Ω1) ≤ |N1|+ |NΓ|+ |N2|, (5.28)

where

N1 = cNS

(
Uhm

;Uhm+1 −U∗hm+1
,Uhm+1 −U∗hm+1

)
+ cNS

(
Uhm+1 −U∗hm+1

;Uhm
,Uhm+1 −U∗hm+1

)
,

N2 = cNS

(
Uhm+1 −Uhm

;Uhm+1 −Uhm
,Uhm+1 −U∗hm+1

)
,

NΓ =
(
φ∗hm+1

− φhm+1 , (Uhm+1 −U∗hm+1
) · n12

)
Γ12
.

Applying Lemma 1 and the induction hypothesis ((5.21b) for j = m) it follows that

|N1| ≤ C4||D(Uhm
)||L2(Ω1)||D(Uhm+1 −U∗hm+1

)||2L2(Ω1)

≤ C4
Nm√

2ν
||D(Uhm+1 −U∗hm+1

)||2L2(Ω1). (5.29)

Similarly using Lemma 1, Young’s inequality and inequalities in (5.1)-(5.2) we can bound

|N2| ≤
C2

4

2ν
||D(Uhm+1 −Uhm

)||4L2(Ω1) +
ν

2
||D(Uhm+1 −U∗hm+1

)||2L2(Ω1) (5.30a)

|NΓ| ≤
(C0C1C2)2

2ν
||φ∗hm+1

− φhm+1 ||2DG +
ν

2
||D(Uhm+1 −U∗hm+1

)||2L2(Ω1). (5.30b)

Combining (5.29)-(5.30b) in (5.28) yields(
ν − C4

Nm√
2ν

)
||D(Uhm+1 −U∗hm+1

)||2L2(Ω1) ≤
C2

4

2ν
||D(Uhm+1 −Uhm

)||4L2(Ω1) +
(C0C1C2)2

2ν
||φ∗hm+1

− φhm+1 ||2DG,

(5.31)

then applying (5.22) to (5.31) we obtain

||D(Uhm+1 −U∗hm+1
)||2L2(Ω1) ≤

C2
4

4ν2
||D(Uhm+1 −Uhm

)||4L2(Ω1) +
(C0C1C2)2

4ν2
||φ∗hm+1

− φhm+1 ||2DG. (5.32)

The first term in (5.32) can be bound by applying Lemma 3 and the induction hypothesis ((5.7b) for j = m)
as follows

||D(Uhm+1 −Uhm
)||L2(Ω1) ≤ ||D(Uhm+1 − u)||L2(Ω1) + ||D(u−Uhm

)||L2(Ω1) ≤ C(hm+1 + hm). (5.33)

The bound for the second term in (5.32) follows from (5.27b), therefore we can conclude that

||D(Uhm+1 −U∗hm+1
)||2L2(Ω1) ≤ Ch

4
m (5.34)

after dropping higher order terms.
The pressure error bound can be derived using standard inf-sup arguments. We include the proof for

completeness. Setting q2 = 0 in (5.26a) yields

aNS

(
Uhm+1 −U∗hm+1

,v1

)
+ bNS

(
v1, P

hm+1 − P ∗hm+1

)
+ cNS

(
Uhm

;Uhm+1 −U∗hm+1
,v1

)
+cNS

(
Uhm+1 −U∗hm+1

;Uhm ,v1

)
+

1

G

(
(Uhm+1 −U∗hm+1

) · τ 12,v1 · τ 12

)
Γ12

(5.35)

=
(
φ∗hm+1

− φhm+1 ,v1 · n12

)
Γ12
− cNS

(
Uhm+1 −Uhm ;Uhm+1 −Uhm ,v1

)
.
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For brevity, we define

T1 = cNS

(
Uhm

;Uhm+1 −U∗hm+1
,v1

)
+ cNS

(
Uhm+1 −U∗hm+1

;Uhm
,v1

)
,

TΓ =
(
φ∗hm+1

− φhm+1 ,v1 · n12

)
Γ12
− 1

G

(
(Uhm+1 −U∗hm+1

) · τ 12,v1 · τ 12

)
Γ12
,

T2 = cNS

(
Uhm+1 −Uhm

;Uhm+1 −Uhm
,v1

)
.

These terms can be bound using Lemma 1, (5.21b) and inequalities in (5.1)-(5.2) as follows

|T1| ≤ C4
Nm√

2ν
||D(Uhm+1 −U∗hm+1

)||L2(Ω1)||D(v1)||L2(Ω1), (5.36a)

|TΓ| ≤ C0C1

(
C2||φ∗hm+1

− φhm+1 ||DG +
1

G
||D(Uhm+1 −U∗hm+1

)||L2(Ω1)

)
||D(v1)||L2(Ω1), (5.36b)

|T2| ≤ C4||D(Uhm+1 −Uhm)||2L2(Ω1)||D(v1)||L2(Ω1). (5.36c)

Applying the inf-sup condition (3.1) to (5.35) we obtain

||Phm+1 − P ∗hm+1
||L2(Ω1) ≤

bNS(v1, P
hm+1 − P ∗hm+1

)

||D(v1)||L2(Ω1)

≤
|aNS(Uhm+1 −U∗hm+1

,v1)|+ |T1|+ |TΓ|+ |T2|
||D(v1)||L2(Ω1)

. (5.37)

Then using the error estimates (5.27b) and (5.33)-(5.34) in the bounds (5.36a)-(5.36c) and using Cauchy–
Schwarz inequality to bound aNS in (5.37) yields

||Phm+1 − P ∗hm+1
||L2(Ω1) ≤

(
2ν + C4

Nm√
2ν

+
C0C1

G

)
||D(Uhm+1 −U∗hm+1

)||L2(Ω1)

+ C4||D(Uhm+1 −Uhm
)||2L2(Ω1) + C0C1C2||φ∗hm+1

− φhm+1 ||DG

≤ Ch2
m. (5.38)

The convergence results (5.20a)-(5.20b) follow from the triangular inequalities,

||φ− φ∗hm+1
||DG ≤ ||φ− φhm+1 ||DG + ||φhm+1 − φ∗hm+1

||DG,

||D(u−U∗hm+1
)||L2(Ω1) ≤ ||D(u−Uhm+1)||L2(Ω1) + ||D(Uhm+1 −U∗hm+1

)||L2(Ω1),

||p− P ∗hm+1
||L2(Ω1) ≤ ||p− Phm+1 ||L2(Ω1) + ||Phm+1 − P ∗hm+1

||L2(Ω1),

(5.27b), (5.34), (5.38), Lemma 3 and the mesh relation hm+1 = h2
m.

We conclude by proving the L2 error bound for the velocity for j = m + 1, the proof follows from the
arguments similar for the two-grid method in [39]. We consider the following linearized adjoint problem

Find (w∗, r∗) ∈ (X1,M1) s.t. ∀v1 ∈X1,∀q1 ∈M1,

aNS(v1,w
∗) + bNS(v1, r

∗) + bNS(w∗, q1) + cNS(u;v1,w
∗) + cNS(v1;u,w∗) (5.39)

+
1

G

(
v1 · τ 12,w

∗ · τ 12

)
Γ12

+ (φ− φ∗hm+1
,w∗ · n12)Γ12 = (g∗1,v1)Ω1 .

where (u, φ) is a nonsingular solution of (2.4a)-(2.4b). We assume that the problem (5.39) is H2(Ω1) regular
so that for any g∗1 ∈ L2(Ω1) the solution (w∗, r∗) ∈ H2(Ω1)×H1(Ω1) satisfies the H2-regularity assumption

||w∗||H2(Ω1) + ||r∗||H1(Ω1) ≤ C||g∗1||L2(Ω1). (5.40)
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Setting g∗1 = u−U∗hm+1
and (v1, q1) = (u−U∗hm+1

, p− P ∗hm+1
) in (5.39) and splitting the nonlinear terms,

we obtain

||u−U∗hm+1
||2L2(Ω1) = aNS(u−U∗hm+1

,w∗) + bNS(u−U∗hm+1
, r∗) + bNS(w∗, p− P ∗hm+1

)

+ cNS(Uhm
;u−U∗hm+1

,w∗) + cNS(u−U∗hm+1
;Uhm

,w∗)

+
1

G
((u−U∗hm+1

) · τ 12,w
∗ · τ 12)Γ12

+ (φ− φ∗hm+1
,w∗ · n12)Γ12

+ cNS(u−Uhm
;u−U∗hm+1

,w∗) + cNS(u−U∗hm+1
;u−Uhm

,w∗). (5.41)

Setting q2 = 0 in (2.4a)-(2.4b) and subtracting Step 2 of the multilevel method, (4.3a)-(4.3b) yields

aNS(u−U∗hm+1
,v1) + bNS(u−U∗hm+1

, q1) + bNS(v1, p− P ∗hm+1
) + cNS(Uhm ;u−U∗hm+1

,v1)

+cNS(u−U∗hm+1
;Uhm

,v1) +
1

G

(
(u−U∗hm+1

) · τ 12,v1 · τ 12

)
Γ12

+ (φ− φ∗hm+1
,v1 · n12)Γ12

(5.42)

+cNS(u−Uhm
;u−Uhm

,v1) = 0.

We subtract the error term (5.42) from the right hand side of (5.41) to obtain

||u−U∗hm+1
||2L2(Ω1) = aNS(u−U∗hm+1

,w∗ − v1) + bNS(u−U∗hm+1
, r∗ − q1)

+ bNS(w∗ − v1, p− P ∗hm+1
) + cNS(Uhm

;u−U∗hm+1
,w∗ − v1)

+ cNS(u−U∗hm+1
;Uhm

,w∗ − v1) + (φ− φ∗hm+1
, (w∗ − v1) · n12)Γ12

(5.43)

+
1

G

(
(u−U∗hm+1

) · τ 12, (w
∗ − v1) · τ 12

)
Γ12

+ cNS(u−Uhm ;u−U∗hm+1
,w∗)

+ cNS(u−U∗hm+1
;u−Uhm

,w∗)− cNS(u−Uhm
;u−Uhm

,v1).

We bound the first three terms of the right hand of (5.43) using (5.1), (5.20b) and (5.40) and as follows

aNS(u−U∗hm+1
,w∗ − v1) ≤ ||D(u−U∗hm+1

)||L2(Ω1)||D(w∗ − v1)||L2(Ω1)

≤ C(h2
m + hm+1)hm+1||g∗1||L2(Ω1), (5.44a)

bNS(u−U∗hm+1
, r∗ − q1) ≤ C0C1||D(u−U∗hm+1

)||L2(Ω1)||r∗ − q1||L2(Ω1)

≤ C(h2
m + hm+1)hm+1||g∗1||L2(Ω1), (5.44b)

bNS(w∗ − v1, p− P ∗hm+1
) ≤ C0C1||D(w∗ − v1)||L2(Ω1)||p− P ∗hm+1

||L2(Ω1)

≤ Chm+1||g∗1||L2(Ω1)(h
2
m + hm+1). (5.44c)

Similarly for the interface terms, using (5.1)-(5.2), from the newly derived estimates (5.20a)-(5.20b) and (5.40)
we have∣∣∣∣(φ− φ∗hm+1

, (w∗ − v1) · n12)Γ12
+

1

G

(
(u−U∗hm+1

) · τ 12, (w
∗ − v1) · τ 12

)
Γ12

∣∣∣∣
≤

(
C2||φ− φ∗hm+1

||DG +
C0C1

G
||D(u−U∗hm+1

)||L2(Ω1)

)
C0C1||D(w∗ − v1)||L2(Ω1)

≤ C(h2
m + hm+1)hm+1||g∗1||L2(Ω1)). (5.45)

The rest of the terms are bound using Lemma 1, (5.20a)-(5.20b) and the stability and convergence assump-
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tions of the induction hypothesis ((5.21b),(5.7b)-(5.7c) for j = m) and (5.40) in the following manner∣∣cNS(Uhm ;u−U∗hm+1
,w∗ − v1) + cNS(u−U∗hm+1

;Uhm ,w
∗ − v1)

∣∣
≤ C4||D(Uhm)||L2(Ω1)||D(u−U∗hm+1

)||L2(Ω1)||D(w∗ − v1)||L2(Ω1)

≤ C(h2
m + hm+1)hm+1||g∗1||L2(Ω1), (5.46a)∣∣cNS(u−Uhm ;u−U∗hm+1

,w∗) + cNS(u−U∗hm+1
;u−Uhm ,w

∗)
∣∣

≤ C4||u−Uhm ||L2(Ω1)||D(u−U∗hm+1
)||L2(Ω1)||w∗||H2(Ω1)

≤ Ch2
m(h2

m + hm+1)||g∗1||L2(Ω1), (5.46b)∣∣cNS(u−Uhm ;u−Uhm ,v1)
∣∣ ≤ ∣∣cNS(u−Uhm ;u−Uhm ,w

∗ − v1) + cNS(u−Uhm ;u−Uhm ,w
∗)
∣∣

≤ C4

(
||D(u−Uhm

)||2L2(Ω1)||D(w∗ − v1)||L2(Ω1)

+ ||D(u−Uhm
)||L2(Ω1)||u−Uhm

||L2(Ω1)||w∗||H2(Ω1)

)
≤ C(h2

mhm+1 + h3
m)||g∗1||L2(Ω1)). (5.46c)

Combining (5.44a)-(5.46c) and dropping higher order terms yields

||u−U∗hm+1
||2L2(Ω1) ≤ C(h3

m + h2
m+1)||g∗1||L2(Ω1).

The result (5.20c) follows from the mesh relation hm+1 = h2
m and recalling that g∗1 = u−U∗hm+1

.

Remark 2. The L2 error convergence rate for the free flow velocity in Theorem 5 is suboptimal for hj =
h2
j−1. However, our numerical experiments seem to indicate that that the convergence is optimal therefore

a finer analysis may be needed. In this work, the addition of the correction step allows us to prove optimal
convergence of the final Navier–Stokes velocity solution in the L2 norm with mesh spacing hj = h2

j−1. Our
numerical results show that the correction step is necessary to improve the quality of the decoupled solution
most notably in the porous medium.

Theorem 6. Under the assumptions of Theorem 5, the solution of Step 3 of the multilevel decoupled scheme
((J + 1)− level method), with j ≥ 1 is stable

κ||φhj ||2DG ≤ D2
j , (5.47a)

2ν||D(Uhj )||2L2(Ω1) ≤ N
2
j , (5.47b)

where

Dj =

[
3

κ

(
P2

2 ||f2||2L2(Ω2) + (C0C1C2)2
(N ∗j )2

2ν
+ C2

3 ||gN||2L2(Γ2N)

)] 1
2

,

Nj =

[
3

ν

(
(P1C1)2||f1||2L2(Ω1) +

{
C4

N ∗j√
2ν

(
Nj−1√

2ν
+ ||D(Uhj−1

−U∗hj
)||L2(Ω1)

)}2

+ (C0C1C2)2 (Dj)
2

κ

)] 1
2

.

Further, if the condition hj = h2
j−1 holds then there exists a constant C independent of hj such that

||φ− φhj
||DG ≤ C(h3

j−1 + hj) ≤ Chj , (5.48a)

||D(u−Uhj )||L2(Ω1) + ||p− Phj ||L2(Ω1) ≤ C(h3
j−1 + hj) ≤ Chj . (5.48b)

||u−Uhj ||L2(Ω1) ≤ C(h4
j−1 + h2

j ) ≤ Ch2
j . (5.48c)

Proof. The proof follows arguments similar to Theorem 5 therefore we highlight the differences. We
proceed by induction assuming that Theorem 6 holds for j = m, for 1 ≤ m ≤ J − 1. For the Darcy pressure
bound we choose q2 = φm+1 in (4.4) and use (5.1)-(5.2) to obtain

κ||φhm+1 ||2DG ≤
3P2

2

κ
||f2||2L2(Ω2) +

3(C0C1C2)2

κ
||D(U∗hm+1

)||2L2(Ω1) +
3C2

3

κ
||gN||2L2(Γ2N). (5.49)
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The result (5.47a) follows from applying Theorem 5 to bound U∗hm+1
in (5.49). Similarly, for the velocity

we choose (v1, q1) = (Uhm+1
, Phm+1

) in (4.5a)-(4.5b) to obtain

aNS(Uhm+1
,Uhm+1

) + cNS(Uhm
;Uhm+1

,Uhm+1
) + cNS(Uhm+1

;Uhm
,Uhm+1

) +
1

G

(
Uhm+1 · τ 12,Uhm+1 · τ 12

)
Γ12

= (f1,Uhm+1
)Ω1

+ cNS(Uhm
;U∗hm+1

,Uhm+1
) + cNS(U∗hm+1

;Uhm
−U∗hm+1

,Uhm+1
)− (φhm+1

,Uhm+1
· n12)Γ12

.

(5.50)

Applying Lemma 1 and inequalities in (5.1)-(5.2) as in Theorem 5 to bound terms in (5.50) yields(
ν − C4

Nm√
2ν

)
||D(Uhm+1)||2L2(Ω1) ≤

3

4ν

(
(P1C1)2||f1||2L2(Ω1) (5.51)

+

[
C4||D(U∗hm+1

)||L2(Ω1)

{
||D(Uhm)||L2(Ω1) + ||D(Uhm −U

∗
hm+1

)||L2(Ω1)

}]2

+ (C0C1C2)2||φhm+1 ||2DG

)
.

We obtain (5.47b) by applying the small data condition (5.22), (5.47a), Theorem 5 and the induction
hypothesis ((5.21b) and (5.48b) for j = m).

For the error analysis we begin by taking the difference between the fully coupled scheme (3.5a)-(3.5b)
and Step 3 of the multilevel method (4.4) ,(4.5a)-(4.5b) to obtain

∀v1 ∈Xhm+1

1 ,∀q1 ∈Mhm+1

1 , q2 ∈Mhm+1

2 ,

aNS

(
Uhm+1 −Uhm+1

,v1

)
+ bNS

(
v1, P

hm+1 − Phm+1

)
+ cNS

(
Uhm

;Uhm+1 −Uhm+1
,v1

)
+cNS

(
Uhm+1 −Uhm+1

;Uhm
,v1

)
+ aD(φhm+1 − φhm+1

, q2)

+
1

G

(
(Uhm+1 −Uhm+1

) · τ 12,v1 · τ 12

)
Γ12

=
(
φhm+1

− φhm+1 ,v1 · n12

)
Γ12

(5.52a)

+
(
(Uhm+1 −U∗hm+1

) · n12, q2

)
Γ12
− cNS(Uhm

;U∗hm+1
,v1) + cNS

(
U∗hm+1

;U∗hm+1
−Uhm

,v1

)
+cNS(Uhm

;Uhm+1 ,v1) + cNS(Uhm+1 ;Uhm
,v1)− cNS(Uhm+1 ;Uhm+1 ,v1)

∀q1 ∈Mh
1 , bNS

(
Uhm+1

−Uhm+1 , q1

)
= 0. (5.52b)

Setting (v1, q1) = 0 and q2 = φhm+1−φhm+1
in (5.52a)-(5.52b), it follows as in Theorem 5 by using arguments

similar to [9] that

||φhm+1 − φhm+1
||DG ≤ C

{
hm+1||D(Uhm+1 −U∗hm+1

)||L2(Ω1) + ||Uhm+1 −U∗hm+1
||L2(Ω1)

}
≤ C

{
hm+1h

2
m + h2

m+1 + h3
m

}
≤ Ch3

m (5.53)

after applying Theorem 5, Lemma 3 and dropping high order terms.
For the velocity error, we first note that the nonlinear terms in the right hand-side of (5.52a) can be

written as

cNS

(
U∗hm+1

;U∗hm+1
−Uhm

,v1

)
− cNS(Uhm

;U∗hm+1
,v1) + cNS(Uhm

;Uhm+1 ,v1) + cNS(Uhm+1 ;Uhm
,v1)

−cNS(Uhm+1 ;Uhm+1 ,v1) = cNS(U∗hm+1
−Uhm+1 ;U∗hm+1

−Uhm+1 ,v1) (5.54)

+cNS(Uhm+1 −Uhm
;U∗hm+1

−Uhm+1 ;v1) + cNS(Uhm+1 −U∗hm+1
;Uhm

−Uhm+1 ,v1),

then by choosing v1 = Uhm+1 −Uhm+1
, q1 = Phm+1 − Phm+1

and q2 = 0 in (5.52a)-(5.52b) we obtain

2ν||D(Uhm+1 −Uhm+1
)||2L2(Ω1) ≤ |N1|+ |NΓ|+ |N2|+ |N3|, (5.55)
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where

N1 = −
[
cNS

(
Uhm

;Uhm+1 −Uhm+1
,Uhm+1 −Uhm+1

)
+ cNS

(
Uhm+1 −Uhm+1

;Uhm
,Uhm+1 −Uhm+1

)]
,

N2 = cNS(U∗hm+1
−Uhm+1 ;U∗hm+1

−Uhm+1 ,Uhm+1 −Uhm+1
),

N3 = cNS(Uhm+1 −Uhm
;U∗hm+1

−Uhm+1 ;Uhm+1 −Uhm+1
)

+ cNS(Uhm+1 −U∗hm+1
;Uhm

−Uhm+1 ,Uhm+1 −Uhm+1
)

NΓ =
(
φhm+1

− φhm+1 , (Uhm+1 −Uhm+1
) · n12

)
Γ12
.

We bound the above terms as in Theorem 5, using the induction assumption (5.21b) (for j = m), Lemma 1
and inequalities in (5.1)-(5.2) as follows

|N1| ≤ C4
Nm√

2ν
||D(Uhm+1 −Uhm+1

)||2L2(Ω1), (5.56a)

|N2| ≤
3C2

4

4ν

{
||D(U∗hm+1

−Uhm+1)||L2Ω1

}4

+
ν

3
||D(Uhm+1 −Uhm+1)||2L2(Ω1) (5.56b)

|N3| ≤
3C2

4

4ν

{
||D(Uhm+1 −Uhm)||L2(Ω1)||D(U∗hm+1

−Uhm+1)||L2(Ω1)

}2

+
ν

3
||D(Uhm+1 −Uhm+1)||2L2(Ω1)

(5.56c)

|NΓ| ≤
3(C0C1C2)2

4ν
||φhm+1

− φhm+1 ||2DG +
ν

3
||D(Uhm+1 −Uhm+1

)||2L2(Ω1). (5.56d)

We combine the bounds (5.56a)-(5.56d) and applying the small data condition (5.22) in (5.55) to obtain

||D(Uhm+1 −Uhm+1
)||2L2(Ω1) ≤

3C2
4

4ν2

[{
||D(U∗hm+1

−Uhm+1)||L2Ω1

}4

+
{
||D(Uhm+1 −Uhm

)||L2(Ω1)||D(U∗hm+1
−Uhm+1)||L2(Ω1)

}2
]

+
3(C0C1C2)2

4ν2
||φhm+1

− φhm+1 ||2DG (5.57)

Applying the triangle inequality, Lemma 3, Theorem 5, the induction hypothesis ((5.48b)-(5.48c) for j = m)
and (5.53) to the error terms in (5.57) and dropping high order terms we can conclude that

||D(Uhm+1 −Uhm+1)||2L2(Ω1) ≤ C
{
h4
m+1 + [(hm+1 + hm)(h2

m + hm+1)]2 + (h3
m)2

}
≤ C(h3

m)2 (5.58)

For the pressure error setting q2 = 0 in (5.52a) and using (5.54) to rewrite the nonlinear terms, it follows
from the inf-sup condition (3.1) that

||Phm+1 − Phm+1
||L2(Ω1) ≤

bNS(v1, P
hm+1 − Phm+1)

||D(v1)||L2(Ω1)
(5.59a)

≤
|aNS(Uhm+1 −Uhm+1

,v1)|+ |T1|+ |TΓ|+ |T2|+ |T3|
||D(v1)||L2(Ω1)

(5.59b)
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where the following bounds are established as in Theorem 5

|T1| =
∣∣cNS

(
Uhm

;Uhm+1 −Uhm+1
,v1

)
+ cNS

(
Uhm+1 −Uhm+1

;Uhm
,v1

)∣∣
≤ C4

Nm√
2ν
||D(Uhm+1 −Uhm+1

)||L2(Ω1)||D(v1)||L2(Ω1), (5.60a)

|TΓ| =
∣∣(φhm+1

− φhm+1 ,v1 · n12

)
Γ12
− 1

G

(
(Uhm+1 −Uhm+1

) · τ 12,v1 · τ 12

)
Γ12

∣∣
≤ C0C1

(
C2||φhm+1

− φhm+1 ||DG +
1

G
||D(Uhm+1 −Uhm+1

)||L2(Ω1)

)
||D(v1)||L2(Ω1), (5.60b)

|T2| =
∣∣cNS(U∗hm+1

−Uhm+1 ;U∗hm+1
−Uhm+1 ,v1)

∣∣
≤ C4||D(U∗hm+1

−Uhm+1)||2L2(Ω1)||D(v1)||L2(Ω1), (5.60c)

|T3| =
∣∣cNS(Uhm+1 −Uhm

;U∗hm+1
−Uhm+1 ;v1) + cNS(Uhm+1 −U∗hm+1

;Uhm
−Uhm+1 ,v1)

∣∣
≤ C4||D(Uhm+1 −Uhm

)||L2(Ω1)||D(U∗hm+1
−Uhm+1)||L2(Ω1)||D(v1)||L2(Ω1). (5.60d)

Combining the bounds (5.60a)-(5.60d) in (5.59b) yields

||Phm+1 − Phm+1
||L2(Ω1) ≤

(
2ν + C4

Nm√
2ν

+
C0C1

G

)
||D(Uhm+1 −Uhm+1

)||L2(Ω1) + C0C1C2||φhm+1
− φhm+1 ||DG

+ C4

{
||D(U∗hm+1

−Uhm+1)||2L2(Ω1)

+ ||D(Uhm+1 −Uhm)||L2(Ω1)||D(U∗hm+1
−Uhm+1)||L2(Ω1)

}
≤ C{h3

m + h4
m + h2

m(hm+1 + hm)}
≤ Ch3

m (5.61)

after applying Lemma 3, (5.34), (5.53), (5.58) and the induction hypothesis ((5.48b) for j = m) and dropping
high order terms. Thus (5.48a)-(5.48b) follow from Lemma 3 and (5.53), (5.58) and (5.61).

Finally we prove the L2 error bound for the Navier-Stokes velocity. We consider the following adjoint
problem similar to (5.39) in Theorem 5.

Find (w, r) ∈ (X1,M1) s.t. ∀v1 ∈X1,∀q1 ∈M1,

aNS(v1,w1) + bNS(v1, r) + bNS(w, q1) + cNS(u;v1,w) + cNS(v1;u,w) (5.62)

+
1

G

(
v1 · τ 12,w · τ 12

)
Γ12

+ (φ− φhm+1
,w · n12)Γ12

= (g1,v1)Ω1
.

where (u, φ) is a nonsingular solution of (2.4a)-(2.4b) satisfying the H2-regularity assumption

||w||H2(Ω1) + ||r||H1(Ω1) ≤ C||g1||L2(Ω1). (5.63)

Setting g1 = u−Uhm+1
and (v1, q1) = (u−Uhm+1

, p− Phm+1
) in (5.62) and splitting the nonlinear terms

yields

||u−Uhm+1
||2L2(Ω1) = aNS(u−Uhm+1

,w) + bNS(u−Uhm+1
, r) + bNS(w, p− Phm+1

)

+ cNS(Uhm
;u−Uhm+1

,w) + cNS(u−Uhm+1
;Uhm

,w)

+
1

G
((u−Uhm+1

) · τ 12,w · τ 12)Γ12
+ (φ− φhm+1

,w · n12)Γ12

+ cNS(u−Uhm
;u−Uhm+1

,w) + cNS(u−Uhm+1
;u−Uhm

,w) (5.64)
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Setting q2 = 0 in (2.4a)-(2.4b) and subtracting Step 3 of the multilevel method (4.5a)-(4.5b) yields

aNS(u−Uhm+1
,v1) + bNS(u−Uhm+1

, q1) + bNS(v1, p− Phm+1
) + cNS(Uhm

;u−Uhm+1
,v1)

+cNS(u−Uhm+1
;Uhm

,v1) + (φ− φhm+1
,v1 · n12)Γ12

+
1

G

(
(u−Uhm+1

) · τ 12,v1 · τ 12

)
Γ12

(5.65)

+cNS(u−Uhm ;u−U∗hm+1
,v1) + cNS(u−U∗hm+1

;u−Uhm ,v1)− cNS(u−U∗hm+1
;u−U∗hm+1

,v1) = 0.

Subtracting the error term (5.65) in the right hand side of (5.64), we obtain

||u−Uhm+1
||2L2(Ω1) = aNS(u−Uhm+1

,w − v1) + bNS(u−Uhm+1
, r − q1) + bNS(w − v1, p− Phm+1

)

+ cNS(Uhm
;u−Uhm+1

,w − v1) + cNS(u−Uhm+1
;Uhm

,w − v1)

+ (φ− φhm+1 , (w − v1) · n12)Γ12 +
1

G

(
(u−Uhm+1

) · τ 12, (w − v1) · τ 12

)
Γ12

+ cNS(u−Uhm
;u−Uhm+1

,w) + cNS(u−Uhm+1
;u−Uhm

,w)

− cNS(u−Uhm
;u−U∗hm+1

,v1)− cNS(u−U∗hm+1
;u−Uhm

,v1)

+ cNS(u−U∗hm+1
;u−U∗hm+1

,v1) = 0. (5.66)

We bound the terms in (5.66) in a manner similar to (5.44a)-(5.44c) in Theorem 5 as follows∣∣aNS(u−Uhm+1
,w − v1)

∣∣ ≤ Ch2
m+1||g1||L2(Ω1), (5.67a)∣∣bNS(u−Uhm+1

, r − q1) + bNS(w − v1, p− Phm+1
)
∣∣ ≤ Ch2

m+1||g1||L2(Ω1). (5.67b)

Similarly as in (5.45) we obtain∣∣(φ− φhm+1 , (w − v1) · n12)Γ12 +
1

G

(
(u−Uhm+1) · τ 12, (w − v1) · τ 12

)
Γ12

∣∣
≤ Ch2

m+1||g1||L2(Ω1). (5.68)

Using Lemma 1, Theorem 5, (5.63) and the induction hypothesis ((5.21b) and (5.48b)-(5.48c) for j = m)
the following bounds hold∣∣cNS(Uhm

;u−Uhm+1
,w − v1) + cNS(u−Uhm+1

;Uhm
,w − v1)

∣∣
≤ C4||D(Uhm

)||L2(Ω1)||D(u−Uhm+1
)||L2(Ω1)||D(w − v1)||L2(Ω1)

≤ C(h2
m + hm+1)hm+1||g1||L2(Ω1) (5.69a)∣∣cNS(u−Uhm ;u−Uhm+1 ,w) + cNS(u−Uhm+1 ;u−Uhm ,w)

∣∣
≤ C4||u−Uhm ||L2(Ω1)||D(u−Uhm+1)||L2(Ω1)||w||H2(Ω1)

≤ Ch2
m(h2

m + hm+1)||g1||L2(Ω1) (5.69b)∣∣cNS(u−Uhm
;u−U∗hm+1

,v1)
∣∣ ≤ ∣∣cNS(u−Uhm

;u−U∗hm+1
,w − v1)

∣∣+
∣∣cNS(u−Uhm

;u−U∗hm+1
,w)

∣∣
≤ C4

{
||D(u−Uhm

)||L2(Ω1)||D(u−U∗hm+1
)||L2(Ω1)||D(w − v1)||L2(Ω1)

+ ||u−Uhm
||L2(Ω1)||D(u−U∗hm+1

)||L2(Ω1)||w||H2(Ω1)

}
≤ C

{
hm(h2

m + hm+1)hm+1 + h2
m(h2

m + hm+1)
}
||g1||L2(Ω1) (5.69c)
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∣∣cNS(u−U∗hm+1
;u−Uhm ,v1)

∣∣ ≤ ∣∣cNS(u−U∗hm+1
;u−Uhm ,w − v1)

∣∣+
∣∣cNS(u−U∗hm+1

;u−Uhm ,w)
∣∣

≤ C4

{
||D(u−U∗hm+1

)||L2(Ω1)||D(u−Uhm
)||L2(Ω1)||D(w − v1)||L2(Ω1)

+ ||D(u−U∗hm+1
)||L2(Ω1)||u−Uhm

||L2(Ω1)||w||H2(Ω1)

}
≤ C

{
(h2

m + hm+1)hmhm+1 + (h2
m + hm+1)h2

m

}
||g1||L2(Ω1) (5.70a)∣∣cNS(u−U∗hm+1

;u−U∗hm+1
,v1)

∣∣ ≤ ∣∣cNS(u−U∗hm+1
;u−U∗hm+1

,w − v1)
∣∣+
∣∣cNS(u−U∗hm+1

;u−U∗hm+1
,v1)

∣∣
≤ C4

{
||D(u−U∗hm+1

)||2L2(Ω1)||D(w − v1)||L2(Ω1)

+ ||D(u−U∗hm+1
)||L2(Ω1)||u−U∗hm+1

||L2(Ω1)||w||H2(Ω1)

}
≤ C{(h2

m + hm+1)hm+1 + (h2
m + hm+1)(h3

m + h2
m+1)}||g1||L2(Ω1) (5.70b)

We conclude by combining (5.67a)-(5.70b) to obtain

||u−Uhm+1 ||L2(Ω1) ≤ C(h4
m + h2

m+1).

after dropping high order terms assuming the mesh relation hm+1 = h2
m.

6. Numerical results

In this section we present numerical results to verify the convergence of the multilevel method and
compare its accuracy and efficiency relative to the fully coupled one-level method. For the comparative
study both the fully coupled and multilevel methods are implemented on the same computational platform
and all linear systems are are solved by the solver MUMPS [2, 3]. For the convergence study we consider
a first order numerical scheme with the Navier–Stokes velocity and pressure are approximated by the first
order MINI element and the Darcy pressure is approximated by the NIPG method (i.e. ε = 1 and σ = 1 in
(3.4)) using linear discontinuous polynomials.

6.1. Convergence of multilevel method

We begin with a test problem with a known smooth solution to verify theoretical convergence rates of
the multilevel scheme. The boundary conditions and source functions are chosen so that the exact solution
to the coupled Navier–Stokes/Darcy problem is

u(x, y) =
(
− cos(πx) sin(πy), sin(πx) cos(πy)

)
,

p(x, y) =
y2

2
sin(πx), φ(x, y) =

y2

2
sin(πx).

The computational domain Ω = [0, 1]× [0, 2] is subdivided into Ω1 = [0, 1]× [1, 2] and Ω2 = [0, 1]× [0, 1] with
the interface Γ12 along y = 1. We prescribe Dirichlet boundary conditions on the free flow boundary Γ1.
On Γ2, we prescribe Dirichlet and Neumann boundary conditions on the horizontal and lateral boundary
edges, respectively. The physical parameters ν,G and k are set to 1.0. For comparison, we first show the
convergence of the fully coupled scheme in Table 1. The observed convergence is optimal; first order in the

1/h ||p− Ph||0 ||D(u−Uh)||0 ||φ− φh||DG ||φ− φh||0 ||u−Uh||0
2 2.447 ×101 4.290 ×100 5.461 ×10−1 9.499 ×10−2 2.088 ×10−1

4 1.927 ×100 1.131 ×100 2.826 ×10−1 2.423 ×10−2 9.426 ×10−2

16 1.505 ×10−1 2.633 ×10−1 7.139 ×10−2 1.529 ×10−3 5.747 ×10−3

256 2.146 ×10−3 1.632 ×10−2 4.509 ×10−3 5.980 ×10−6 2.267 ×10−5

rate 1.53 1.00 1.00 2.00 2.00

Table 1: Errors and convergence of fully coupled scheme

energy and DG norms for the Navier–Stokes velocity and Darcy pressure errors, respectively and second
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order in the L2-norm for the velocity and Darcy pressure. The fluid pressure error converges at a rate better
than first order, this is consistent with other implementations of the MINI element in the literature.

To determine the convergence of the multilevel method we start with the same coarse mesh of size h0

and compare the solution on successively finer meshes hj satisfying hj = h2
j−1 for j ≥ 1. For example, in

Table 2 the solution from a mesh of size h = 1
4 is obtained from a two-level method with the fully coupled

problem solved on a mesh with h0 = 1
2 and decoupled problems on h = 1

4 . Similarly, the solution on a mesh
with h = 1

16 is generated by a three-level method starting with h0 = 1
2 and decoupled problems solved on

h1 = 1
4 and h2 = 1

16 . In Table 2 we observe the expected first order convergence in the energy norm and

Mesh levels ||p− Phj ||0 ||D(u−Uhj )||0 ||φ− φhj ||DG ||φ− φhj ||0 ||u−Uhj ||0
1
2
, 1
4

2.812 ×100 1.351 ×100 2.844 ×10−1 2.337 ×10−2 6.965 ×10−2

1
2
, 1
4
, 1
16

2.586×10−1 3.086 ×10−1 7.467 ×10−2 1.432 ×10−3 4.482 ×10−3

1
2
, 1
4
, 1
16
, 1
256

3.551×10−3 1.886 ×10−2 4.735 ×10−3 5.628 ×10−6 1.781 ×10−5

rate 1.54 1.00 1.00 2.00 2.00

Table 2: Errors and convergence of multilevel method with h0 = 1
2

, hj = h2j−1

second order in the L2 norm for the Navier–Stokes velocity. The convergence of the Darcy pressure in the
L2 norm also appears to be optimal though we have no formal proof of this result. To study the effect of
the size of the initial coarse mesh, we repeat the convergence study with a finer initial coarse mesh with
h0 = 1

4 .

Mesh levels ||p− Phj ||0 ||D(u−Uhj )||0 ||φ− φhj ||DG ||φ− φhj ||0 ||u−Uhj ||0
1
4
, 1
16

1.883 ×10−1 2.754 ×10−1 7.274 ×10−2 1.481 ×10−3 6.033 ×10−3

1
4
, 1
16
, 1
256

2.804 ×10−3 1.699×10−2 4.599 ×10−3 7.048 ×10−6 2.330 ×10−5

rate 1.52 1.00 1.00 1.93 2.00

Table 3: Errors and convergence of multilevel method with h0 = 1
4

, hj = h2j−1

Table 3 shows the errors and convergence rates for the multilevel method with h0 = 1
4 . The observed

convergence rates are optimal and we note that the order of magnitude of the errors for the decoupling
scheme with initial coarse meshes with h0 = 1

4 and h0 = 1
2 are the same; showing that even with a very

coarse initial mesh the multilevel method gives a good approximation to the coupled problem.

Mesh levels ||p− P ∗
hj
||0 ||D(u−U∗

hj
)||0 ||φ− φ∗

hj
||DG ||φ− φ∗

hj
||0 ||u−U∗

hj
||0

1
4
, 1
16

1.831 ×10−1 2.753 ×10−1 8.888 ×10−2 1.973 ×10−2 5.957 ×10−3

1
4
, 1
16
, 1
256

3.403 ×10−3 1.699×10−2 5.547 ×10−3 1.198 ×10−3 2.669 ×10−5

rate 1.43 1.00 1.00 1.00 1.95

Table 4: Errors and convergence of multilevel method without correction step with h0 = 1
4

, hj = h2j−1

We conclude the section by discussing the need for the correction step for the multi-level method.
Table 4 shows the errors and convergence rate of the intermediate solution (U∗hj

, P ∗hj
, φ∗hj

). We observe
optimal convergence in both the L2 and H1 norms in the free flow region. However, the L2 norm of the
pressure in the porous medium is suboptimal due to the fact that the coarse mesh velocity is used as a
boundary condition for the Darcy decoupled problem. A comparison of Tables 3 and 4 shows that the
correction step results in significant improvements in the pressure error in the porous media flow region.
The gains in accuracy in the free flow region are modest due to the fact that the pressure solution used in
the intermediate solution is from the fine mesh.

6.2. Accuracy and computational efficiency

Using the same problem set up as in the previous section, we compare the accuracy and efficiency of the
multilevel method to solving the fully coupled approach. For various mesh sizes, we provide the errors and
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CPU times for the solution obtained from the fully coupled (one-level method) and the solution obtained
using a multilevel method where the decoupled problems are solved on a sequence of meshes up to h starting
with a coarse mesh h0. We compare the errors and CPU times; for example, in the first set of test problems

Grid levels ||p− Phj ||0 ||D(u−Uhj )||0 ||(u−Uhj )||0 ||φ− φhj ||DG ||φ− φhj ||0 CPU(s)
1
16

1.504 ×10−1 2.633 ×10−1 5.747 ×10−3 7.139 ×10−2 1.529 ×10−3 1.11
1
4
, 1
16

1.834 ×10−1 2.754 ×10−1 6.033 ×10−3 7.274 ×10−2 1.481 ×10−3 0.45
1
2
, 1
4
, 1
16

2.586 ×10−1 3.086 ×10−1 4.482 ×10−3 7.467 ×10−2 1.432 ×10−3 0.41
1
64

1.746 ×10−2 6.541 ×10−2 3.624 ×10−4 1.780 ×10−2 9.567 ×10−5 16.19
1
8
, 1
64

1.850 ×10−2 6.566 ×10−2 3.683 ×10−4 1.806 ×10−2 9.287 ×10−5 6.06
1

256
2.146 ×10−3 1.632 ×10−2 2.267 ×10−5 4.509 ×10−3 5.980 ×10−6 309.49

1
16
, 1
256

2.164 ×10−3 1.632 ×10−2 2.280 ×10−5 4.512 ×10−3 6.802 ×10−6 98.77
1
4
, 1
16
, 1
256

2.804 ×10−3 1.699 ×10−2 2.330 ×10−5 4.599 ×10−3 7.048 ×10−6 98.06
1
2
, 1
4
, 1
16
, 1
256

3.551 ×10−3 1.886 ×10−2 1.781 ×10−5 4.735 ×10−3 5.628 ×10−6 97.90

Table 5: Comparison of multilevel method with fully coupled method

in Table 5, we solve the fully coupled nonlinear problem on a mesh of size h = 1
16 and compare the CPU times

and accuracy to a two-level method with meshes ( 1
4 ,

1
16 ) and a three-level method with meshes ( 1

2 ,
1
4 ,

1
16 ).

In Table 5, we observe that the multilevel method is able to attain the same order of approximation as the
fully coupled problem even with a very coarse initial mesh of h = 1

2 . For all mesh resolutions considered the
multilevel method takes significantly less CPU time compared to solving the fully coupled problem (even
for the three and four-level methods). Even though the majority of the computational gains are attained by
the two-level method, it is clear that the multilevel method with small non-linear problem is able to attain
the same order of approximation as the fully coupled problem. As we noted in Remark 1, step 2 of the

Grid levels ||p− Phj ||0 ||D(u−Uhj )||0 ||(u−Uhj )||0 ||φ− φhj ||DG ||φ− φhj ||0 CPU(s)
1
16

1.504 ×10−1 2.633 ×10−1 5.747 ×10−3 7.139 ×10−2 1.529 ×10−3 1.11
1
4
, 1
16

1.884 ×10−1 2.754 ×10−1 6.027 ×10−3 7.291 ×10−2 6.027 ×10−3 0.45
1
2
, 1
4
, 1
16

2.586 ×10−1 3.086 ×10−1 4.483 ×10−3 7.474 ×10−2 1.459 ×10−3 0.41
1
64

1.746 ×10−2 6.541 ×10−2 3.624 ×10−4 1.780 ×10−2 9.567 ×10−5 16.19
1
8
, 1
64

1.853 ×10−2 6.566 ×10−2 3.694 ×10−4 1.814 ×10−2 1.476 ×10−4 6.11
1

256
2.146 ×10−3 1.632 ×10−2 2.267 ×10−5 4.509 ×10−3 5.980 ×10−6 309.49

1
16
, 1
256

2.174 ×10−3 1.632 ×10−2 2.444 ×10−5 4.598 ×10−3 7.114 ×10−5 98.85
1
4
, 1
16
, 1
256

2.806 ×10−3 1.699 ×10−2 2.359 ×10−5 4.618 ×10−3 3.118 ×10−5 97.72
1
2
, 1
4
, 1
16
, 1
256

3.554 ×10−3 1.886 ×10−2 1.923 ×10−5 4.755 ×10−3 3.371 ×10−5 97.70

Table 6: Comparison of multilevel method (with φ∗hj−1
on interface in Step 2(ii)) with fully coupled method

multilevel scheme in parallel. In Table 6 we list the errors from this modification of the decoupling scheme.
It is clear in Table 6 that with the exception of the L2 error for the Darcy pressure the decoupling scheme
attains the same order of errors as the fully coupled scheme. However, the errors are larger than in Table 5
particularly in the case of the L2-norm of the Darcy pressure.

In the numerical tests on smooth solutions we have presented a first order scheme i.e first order MINI
elements in Ω1 and linear DG elements in Ω2. Due to ease of implementation we can choose higher order
DG elements in Ω2, this results in a more accurate pressure solution; however, the global convergence of the
scheme remains first order due to the first order elements in Ω1. In numerical results that follow, we use
discontinuous quadratic elements to obtain a more accurate Darcy pressure solution.

6.3. Parabolic Interface

We consider a coupled flow problem in a rectangular domain with a parabolic interface; see Figure 1. We
prescribe u1 = (0,−1) on Γ1 along y = 2 and a no-slip condition on the rest of the boundary. In the porous
medium, we prescribe homogeneous Dirichlet boundary conditions on the horizontal boundary (y = 0) and
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Figure 1: Parabolic interface coarse mesh: Ω1 (black) and Ω2 (grey)

zero Neumann boundary conditions on the lateral edges. The external forcing functions in both domains
are set to zero, ν = 1.0, k is varied and the parameter G = 0.1√

k
as in [7].

We solve the problem using the multilevel method. First, a small nonlinear coupled problem of size 4974
is solved on an unstructured coarse mesh with elements of characteristic lengths of 0.025 and 0.25 near the
parabolic interface and the rest of the domain, respectively; see Figure 1. The choice of this unstructured
mesh enables better resolution of the parabolic interface and also allows for a numerical test with a significant
number of degrees of freedom on the interface to test the robustness of the decoupling method. We apply
a three-level method with meshes ( 1

4 ,
1
16 ,

1
64 ). The solutions plotted in Figure 2 are obtained by solving

two problems of size 204105 and 1058304 in Ω1 and Ω2, respectively. Figure 2 is a plot of the norm of the

(a) k = 1.0 × 10−2 (b) k = 1.0 × 10−4

Figure 2: Norm of velocity for numerical solution on parabolic interface for ν = 1.0

velocity on the finest mesh for values of k = 1.0× 10−2 and 1.0× 10−4. We observe the expected symmetric
flow pattern with a larger norm of velocity in the porous medium with a higher hydraulic conductivity in
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Figure 2a compared to Figure 2b. The low hydraulic conductivity of 1.0 × 10−4I in Figure 2b forces the
flow around the low permeability porous medium towards the edges of the domain.

6.4. Porous medium with discontinuous hydraulic conductivity

In most practical applications the hydraulic conductivity maybe discontinuous due to heterogeneities in
the porous medium. We consider a coupled flow problem with a discontinuous porous medium. The coarse
mesh of the multilevel method is shown in Figure 3. The boundary conditions and data functions are set up

Figure 3: Slant interface with discontinuity in porous medium: Ω1 (black) and Ω2 (grey)

as in the previous problem. The porous medium is portioned into two regions with hydraulic conductivity
k1I and k2I with k1 = 3.0× 10−4 and k2 = 1.5× 10−4 for 0.0 ≤ x ≤ 0.25 and 0.25 ≤ x ≤ 0.5, respectively.
The kinematic viscosity ν = 1.0 and the interface constant G is defined as in the previous example. The
solutions presented are from a three-level method with a coarse mesh with elements of characteristic lengths
0.0125 and 0.125 near the interface and on the rest of the domain, respectively. The fully coupled problem on
the coarse grid is of size 4534. On levels mesh levels ( 1

4 ,
1
16 ,

1
64 ), we solve decoupled problems in each domain.

The solutions plotted are from decoupled problems of size 473329 and 683520 in Ω1 and Ω2, respectively.
Figure 4a shows that the multilevel scheme is able to clearly resolve the sharp discontinuity in the material
permeability. The fluid flow in Ω1 is biased towards the side of the domain that has higher permeability.
The relatively low permeability in the porous medium causes a build up of pressure in Ω1 as the fluid as
shown in Figure 4b. A closer look at the velocity vectors in Figure 5 near the interface reveals the expected
flow pattern showing the effect of the slope on the interface and the discontinuity in the porous medium
with larger velocity vectors on the left side of the computational domain in Ω2. This problem highlights the
advantage of the DG method because the numerical scheme is able to resolve the sharp discontinuity in the
material permeability.

7. Conclusions

We have presented a multilevel decoupling technique for the Navier–Stokes/Darcy problem. The proposed
multilevel scheme exhibits the same order of convergence as the fully coupled approach even for very coarse
initial meshes. The scheme is computationally efficient and comparable in accuracy to the fully coupled
problem. Numerical tests on practical test problems varying the shape of the interface and the hydraulic
conductivity yield the expected flow profiles showing that the decoupling method is robust.
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(a) Norm velocity (b) Pressure

Figure 4: Norm of velocity and flow vectors for numerical solution on discontinuous porous medium

Figure 5: Zoom of vector fields near interface
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