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NUMERICAL ANALYSIS MEETS NUMBER THEORY:

USING ROOTFINDING METHODS TO CALCULATE

INVERSES MOD pn

Michael P. Knapp, Christos Xenophontos

We show how classical rootfinding methods from numerical analysis can be
used to calculate inverses of units modulo prime powers.

1. INTRODUCTION

In this article we explore a very interesting application of tools from numerical
analysis to number theory. As the title suggests, we will see how one can use
classical rootfinding methods, such as Newton’s method, to calculate the reciprocal
of an integer modulo pn, where p is a prime number. We first encountered this
idea in [3], where Newton’s method was used to find the reciprocal of a finite
segment p-adic number (also referred to as Hensel code; see [3] for more details). In
our experience, many people who specialize in either number theory or numerical
analysis do not study the other subject, and so we have attempted to keep our
exposition at a uniformly low level so that specialists in either field may benefit
from this article.

We define fractions modulo pn in the usual way as follows. If a, b and α are
integers and a is not divisible by p, then we say that

α ≡ b

a
(mod pn) if aα ≡ b (mod pn).

Using this definition, the reciprocal
1

a
of an integer a modulo pn is a solution of

the congruence ax ≡ 1 (mod pn). In other words, it is an inverse of a modulo pn.
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The idea of using Newton’s method to perform division (or calculate inverses)
dates back to the early days of computing, since one can actually approximate the
reciprocal of a number by performing only the operations of multiplication and
addition. The idea behind iterative rootfinding methods such as Newton’s method
is as follows. Suppose that we have a function f(x) for which we wish to find a zero
in an interval [a, b]. To accomplish this, let x0 ∈ [a, b] be an initial guess for the zero,
and let g(x) be an iteration function. Then we calculate further approximations
through the formula

(1) xi+1 = g(xi), i = 0, 1, . . .

If the initial guess x0 and the iteration function g(x) are suitably chosen, then the
sequence x0, x1, x2, . . . should converge to a zero of f(x) in [a, b].

If this does in fact occur, then we can talk about the rate at which the
sequence converges to a zero of f(x). Roughly speaking, if the rate of convergence
of a method ism (i.e. the method converges with orderm), then after each iteration
the number of correct significant digits in the approximation increases by a factor of
approximately m. For example, if our approximation converges quadratically (i.e.
with order 2), then the number of correct significant digits approximately doubles
with each iteration.

Now let us see what this has to do with congruences modulo pn. In this
situation, the role of significant digits will be played by smaller powers of p. We
will start with an inverse of a modulo p, and then find inverses of a modulo higher
powers of p until we have an inverse modulo pn. The connection between digits and
powers of p can be found by looking at the base p representation of numbers. It is
well-known that any positive integer α has a base p representation

α = c0 + c1p+ c2p
2 + · · ·+ ckpk,

where 0 ≤ ci ≤ p− 1 for each i. Each coefficient ci is a digit in the base p represen-
tation of α. To find a number which is congruent to α modulo pr, we can simply
truncate the base p expansion of α after the first r digits. Thus, if r < n then we
may think of an inverse of a modulo pr as giving the correct first r digits of an
inverse of a modulo pn.

We note here that our Theorems 1, 3 and 4 ahead are not truly original.
In fact, they are simple consequences of more powerful theorems about iterative
methods. However, we feel that our proofs are worthwhile because they are quite
simple and avoid any heavy machinery.

2. NEWTON’S METHOD (FOR DIVISION MOD pn)

The iteration function for Newton’s method is g(x) = x−f(x)/f ′(x), whence
equation (1) becomes

(2) xi+1 = xi −
f(xi)

f ′(xi)
, i = 0, 1, . . .
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Under suitable assumptions on f, f ′ and x0 (see for example Theorem 3.2 on page
100 of [1]), the above iteration converges to a zero of f(x) in [a, b] at a quadratic

rate. So to calculate
1

a
, we let f(x) =

1

x
− a, and solve f(x) = 0 using Newton’s

Method. In this case iteration (2) becomes

(3) xi+1 = xi(2− axi) , i = 0, 1, . . .

Like Newton’s method for real numbers, we can show that Newton’s method also
converges quadratically for congruences. This is proven in the following theorem.
Although we’re using different language, this is essentially the same as the main
theorem of [3]. We believe that our proof is simpler, however.

Theorem 1. Let α > 0 and suppose that xi is an inverse of a modulo p
α. Then

xi+1 given by (3) is an inverse of a modulo p
2α.

Proof. To prove this, we know that axi ≡ 1 (mod pα), and therefore can write
axi = spα + 1 for some integer s. Then we have

axi+1 = axi(2− axi)
= −s2p2α + 1
≡ 1 (mod p2α).

Hence xi+1 is an inverse of a modulo p
2α, as desired. ¤

So if we can find an inverse of a modulo p to use as an initial guess, then we
can use Newton’s method to find inverses of a modulo p2, p4, p8 and so on. If the
prime p is small, then we can often find an inverse of a modulo p by inspection. If
p is larger, then we can use Fermat’s Little Theorem to find our initial guess.

Theorem 2. (Fermat’s Little Theorem) Suppose that p is prime and that a is an
integer not divisible by p. Then

ap−1 ≡ 1 (mod p).

An easy consequence of this theorem is that if p does not divide a, then ap−2 is an
inverse of a modulo p.

We can evaluate ap−2 modulo p by the technique of repeated squaring. For
example, to find the inverse of 29 modulo 53, we need to evaluate 2951 modulo 53.
To do this, we have

291 ≡ 29 (mod 53)

292 ≡ 46 (mod 53)

294 ≡ 462 ≡ 49 (mod 53)

298 ≡ 492 ≡ 16 (mod 53)

2916 ≡ 162 ≡ 44 (mod 53)

2932 ≡ 442 ≡ 28 (mod 53).
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Thus we obtain

2951 = 2932 · 2916 · 292 · 291 ≡ (28)(44)(46)(29) ≡ 11 (mod 53),

and so
1

29
≡ 11 (mod 53).

Let us now illustrate the use of Newton’s method in the context of the present
paper via an example.

Example 1. Let p = 5, a = 3 and n = 8. We wish to find an integer congruent to
1

3
modulo 58 using the Newton iteration (3). As our initial guess, we choose x0 = 2 since

3(2) ≡ 1 (mod 5) and so 2 ≡
1

3
(mod 5). Then we have from (3) that

x1 = 2 (2− 3 · 2) = −8 ≡ 17 = 2 + 3(5) (mod 52).

Note that 3(17) = 51 ≡ 1 (mod 52), and so 17 ≡
1

3
(mod 52) as indicated by Theorem 1.

Iterating twice more gives us

x2 ≡ 417 = 2 + 3(5) + 1(5)2 + 3(5)3 (mod 54)

x3 ≡ 260417 = 2 + 3(5) + 1(5)2 + 3(5)3 + 1(5)4 + 3(5)5 + 1(5)6 + 3(5)7 (mod 58),

and so we see that 260417 ≡
1

3
(mod 58).

3. THE SECANT METHOD (FOR DIVISION MOD pn)

Another well-known rootfinding method is the secant method, whose iteration
is given by

(4) xi+1 = xi −
f(xi)(xi − xi−1)
f(xi)− f(xi−1)

, i = 1, 2, . . .

Note that we now need two initial guesses x0 and x1, but we no longer need the
derivative1 of f(x). Since “there is no such thing as a free lunch”, the trade-off is
that the order of convergence drops down to the golden ratio φ = (1 +

√
5)/2. In

fact, we will show that after each iteration, instead of doubling (like in Newton’s
method), the number of correct digits increases by a factor of approximately φ. For

our function f(x) =
1

x
− a, equation (4) becomes

(5) xi+1 = xi + xi−1 − axixi−1.

To establish the rate of convergence when using the secant method for congruences
we have the following theorem.

1This is important when the derivative of the function f(x) is difficult to obtain; however, this
is not the case here.
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Theorem 3. Suppose that xi−1 ≡ 1

a
(mod pα) and that xi ≡ 1

a
(mod pβ). Then,

with xi+1 given by (5), we have xi+1 ≡ 1

a
(mod pα+β).

Proof. To prove this, note that since we have axi−1 ≡ 1 (mod pα) and axi ≡ 1
(mod pβ), there exist integers s and t such that

axi−1 = spα + 1 and axi = tpβ + 1.

Then we have

axi+1 = axi + axi−1 − (axi)(axi−1)
= −stpα+β + 1
≡ 1 (mod pα+β),

as desired. ¤

So if x1 and x2 are both inverses of a modulo p
1, we can show by induction

that xi is the inverse of a modulo p
Fi , where Fi is the i

th Fibonacci number. Since
it is well-known that Fi gets closer and closer to φ

n/
√
5 as n gets large, we find

that the secant method has order of convergence φ.

Another way to see this is by introducing the errors

εi+1 = |xi+1 − 1/a|, εi = |xi − 1/a|, εi−1 = |xi−1 − 1/a|.

Then (5) gives the relation

(6) εi+1 = |a|εiεi−1.

Assuming that the rate of convergence of the secant method is r, we have

(7) εi+1 ≈ Aεri ⇐⇒ εi ≈ Aεri−1 ⇐⇒
ε
1/r
i

A1/r
≈ εi−1,

for some positive constant A. Thus, by (6) and (7) we get

εi+1 ≈ C
1

A1/r
ε
1/r
i εi ≈ Bε

1+1/r
i ,

where B,C are positive constants. Hence, ε
1+1/r
i ≈ A

B
εri , from which it follows that

1 + 1/r = r, or equivalently that the order of convergence of the secant method is
given by the positive root of the equation r2− r− 1 = 0, i.e. r = φ = (1+

√
5)/2 ≈

1.6.

It is worth noticing that although the general formula (4) for the iteration
requires that our initial guesses x0 and x1 be different, this is not required in either
formula (5) or Theorem 3. Thus we can take x0 and x1 to both be inverses of a
modulo p, and in fact can even take them to be the same number. Let us illustrate
the above ideas via an example.
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Example 2. Let p = 7, a = 5 and n = 8, i.e. we wish to find an integer congruent to
1

5
modulo 78 using the iteration (5). We choose x0 = x1 = 3, since 5 · 3 ≡ 1 (mod 7). We
have from (5)

x2 = 3 + 3− 5 · 3 · 3 ≡ 10 = 3 + 1(7) (mod 72)

x3 = 10 + 3− 5 · 10 · 3 ≡ 206 = 3 + 1(7) + 4(7)2 (mod 73)

x4 ≡ 6723 = 3 + 1(7) + 4(7)2 + 5(7)3 + 2(7)4 (mod 75)

x5 ≡ 4611841 =

= 3 + 1(7) + 4(7)2 + 5(7)3 + 2(7)4 + 1(7)5 + 4(7)6 + 5(7)7 (mod 78)

and so we see that 4611841 ≡
1

5
(mod 78).

4. FIXED POINT ITERATION AND HIGH ORDER
CONVERGENT METHODS

The general iteration formula (1) actually defines a larger class of iterative
methods, called fixed point methods: instead of solving f(x) = 0 we solve g(x) = x
(for a suitably chosen g(x)). The advantage of this approach is that it can be easily
generalized to higher dimensions and analyzed using a plethora of famous fixed
point theorems. Newton’s method is a special case of a fixed point iteration, as can
be readily seen by equation (2). Under suitable assumptions on g (see Theorems
3.5 and 3.7 on pages 121–124 of [1]), iteration (1) converges to α for any initial
guess x0 sufficiently close to α, at a rate r such that

(8) g(α) = α, g′(α) = g′′(α) = g′′′(α) = · · · = g(r−1)(α) = 0 but g(r)(α) 6= 0.

With this in mind, one can construct iteration functions g such that (8) holds for
some r, hence obtaining a method which converges at that rate.

In our case, Newton’s method can be written as a fixed point iteration with
g(x) = x(2 − ax). Since we already know that this is a quadratically convergent

method, we expect that g
(
1

a

)
=

1

a
, g′

(
1

a

)
= 0, and g′′

(
1

a

)
6= 0, and this is easily

seen to be the case.

Now suppose we wanted to construct an iterative method for finding the zero

of f(x) =
1

x
− a, with a higher convergence rate. To this end, define u(x) =

f(x)/f ′(x) and E2(x) = x− u(x). Then, Newton’s method corresponds to solving

xn+1 = E2(xn) , n = 0, 1, 2, . . .

Traub [5] derived the following relation

(9) Er+1(x) = Er(x)−
u(x)

r
E′r(x) , r = 2, 3, . . .
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to produce a sequence of generalized iterative formulas, of order r + 1, for solving
non-linear equations, known as Schröder’s method of the first kind [4].

In particular, if f(x) =
1

x
−a, then introducing z = 1−ax yields x = (1−z)/a

and u = z(z − 1)/a, so that

E2(x) = x(1 + (1− az)) = 1− z
a
(1 + z) =

1− z2
a

=
1− (1− ax)2

a
.

For arbitrary r ≥ 2, assume that

(10) Er(x) =
1− zr
a

=
1− (1− ax)r

a
.

Then, applying (9) we obtain

Er+1 =
1− zr
a

− z(z − 1)
a

zr−1 =
1

a
(1− zr+1) = 1

a

(
1− (1− ax)r+1

)
.

Therefore, we see that by induction, (10) holds true for arbitrary r ≥ 2. As a
result, an iterative method of order r (≥ 2) for finding an inverse of a modulo
prime numbers is given by

(11) xi+1 = Er(xi) ⇔ xi+1 =
1

a

(
1− (1− axi)r

)
, i = 0, 1, 2, . . .

For example, for r = 2 we obtain (3) and for r = 3 we obtain

(12) xi+1 = xi[1 + (1− axi)(2− axi)].

The following example illustrates the use of iteration (12).

Example 3. As in Example 1, let p = 5, a = 3 and n = 8. We wish to find an integer

congruent to
1

3
modulo 58 using the iteration (12). We expect that 2 iterations will suffice

here, as opposed to 3 iterations which were needed in Example 1, since this method
converges cubically. Indeed, with x0 = 2,

x1 = 2 [1 + (1− 3 · 2)(2− 3 · 2)] = 42 ≡ 42 = 2 + 3(5) + 1(5)2 (mod 53)

x2 = 42 [1 + (1− 3 · 42)(2− 3 · 42)] = 651042 ≡ 651042 (mod 59).

Note that since 651042 is an inverse of 3 modulo 59, it is also an inverse of 3 modulo 58.
Noting that 651042 ≡ 260417 (mod 58), we see that

260417 = 2 + 3(5) + 1(5)2 + 3(5)3 + 1(5)4 + 3(5)5 + 1(5)6 + 3(5)7

is the smallest inverse of 3 modulo 58.

An assertion similar to Theorem 1, can be stated for the generalized method (11):

Theorem 4. Let α > 0 and suppose that xi is an inverse of a modulo p
α. Then

xi+1 given by (11) is an inverse of a modulo p
rα.
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Proof. As before, we have axi = spα + 1, for some integer s. Hence we have

axi+1 = aEr(xi)

= 1− (1− axi)r

= 1− (1− spα − 1)r

= 1− (−1)rsrpαr
≡ 1 (mod prα). ¤

Our next example illustrates the use of iteration (11) with r = 4, i.e.

(13) xi+1 =
1

a

(
1− (1− axi)4

)
,

and compares the performance of all methods presented in this article.

Example 4. Let p = 2, a = 3 and n = 16. We wish to find an integer congruent to
1

3
modulo 216 using iteration (13). As our initial guess we choose x0 = 1, since 3 · 1 ≡ 1
(mod 2). For comparison purposes, we will also show the answers obtained using iterations
(3), (5) and (12) – for (5) we need a second initial guess, and we take x1 = 1. Using iteration
(13) we have

x1 ≡ 11 = 1 + (2) + (2)3 (mod 24)

x2 ≡ 43691 = 1 + (2) + (2)3 + (2)5 + (2)7 + (2)9 + (2)11 + (2)13 + (2)15 (mod 216)

and so we see that in just two iterations we obtain 43691 ≡ 1
3
(mod 216).

For iteration (3) we obtain

x1 ≡ 3 (mod 22), x2 ≡ 11 (mod 24), x3 ≡ 171 (mod 28), x4 ≡ 43691 (mod 216),

while for iteration (5) we get

x2 ≡ 3 (mod 22), x3 ≡ 3 (mod 23), x4 ≡ 1 (mod 25), x5 ≡ 171 (mod 28)

x6 ≡ 2731 (mod 213), x7 ≡ 699051 (mod 221),

from which we obtain 43691 ≡
1

3
(mod 216), since 699051 ≡ 43691 (mod 216).

Finally, for iteration (12), we have

x1 ≡ 2 (mod 23), x2 ≡ 171 (mod 29), x3 ≡ 44739243 (mod 227),

from which we get 43691 ≡
1

3
(mod 216), since 44739243 ≡ 43691 (mod 216).

Therefore, we see that the secant method, which converges at the rate (1+
√
5)/2 ≈

1.6, requires 7 iterations, the quadratically convergent Newton’s method requires 4 iter-

ations, while the cubically and quartically convergent iterations (12) and (13), require 3

and 2 iterations, respectively. These results demonstrate how the higher order methods

can produce the desired inverse in a significantly smaller number of iterations.
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