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HENSEL CODES OF SQUARE ROOTS OF P -ADIC

NUMBERS

Zerzaihi Tahar, Kecies Mohamed, Michael Knapp

In this work we are concerned with the calculation of the Hensel codes of
square roots of p-adic numbers, using the fixed point method and this through
the calculation of the approached solution of f(x) = x2 − a = 0 in Qp. We
also determine the speed of convergence and the number of iterations.

1. INTRODUCTION

The knowledge of the arithmetic and algebraic properties of the p-adic num-
bers is useful to the study of their Diophantine properties and the problems of
approximations. In this present paper we will see how we can use classical root-
finding methods (fixed point) and explore a very interesting application of tools
from numerical analysis to number theory. We use this method to calculate the
zero of a p-adic continuous function f defined on a domain D ⊂ Qp, where

f : Qp → Qp

x 7→ f(x).

To calculate the square root of a p-adic number a ∈ Q∗p, one studies the following
problem

(1)

{
f(x) = x2 − a = 0
a ∈ Q∗p, p− prime number.

Our goal is to calculate the Hensel code of
√
a, which means to determine the

first numbers of the p-adic development of the solution of the previous equation,
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and this solution is approached by a sequence of the p-adic numbers (xn)n ⊂ Q∗p
constructed by the fixed point method. We first encountered this idea in [4] where
the authors used the numerical methods to find the reciprocal of an integer modulo
pn (see [4] for more details).

We are grateful to Dr. Henry Alex Esbelin (Laboratoire d’Algorithmique
et Image de Clermont-Ferrand) for suggesting this topic to us, and also for several
helpful conversations.

2. PRELIMINARIES

Definition 2.1. Let p be a prime number. The field of p-adic numbers Qp is

defined as the completion of the field of rational numbers with respect to the p-adic
metric determined by the p-adic norm. Thus, Qp is obtained from the p-adic norm
in the same way as the real field R is obtained from the usual absolute value as the
completion of Q.
Here, the function |·|p is called the p-adic norm and is defined by

∀x ∈ Qp : |x|p =
{
p−vp(x) if x 6= 0
0 if x = 0,

and vp is the p-adic valuation defined by vp(x) = max {r ∈ Z : pr | x} . The p-adic
distance dp is defined by

dp : Qp ×Qp → R+ ∪ {0}
(x, y) 7→ dp(x, y) = |x− y|p .

Theorem 2.2. Every p-adic number a ∈ Qp has a unique p-adic expansion

a = λnp
n + λn+1p

n+1 + · · ·+ λ−1p−1 + λ0 + λ1p+ λ2p2 + · · · =
∞

∑

k=n

λkp
k

with λk ∈ Z and 0 ≤ λk ≤ p− 1 for each k ≥ n.

The short representation of a is λnλn+1 . . . λ−1 · λ0λ1 . . . , where only the
coefficients of the powers of p are shown. We can use the p-adic point · as a device
for displaying the sign of n as follows:

λnλn+1 . . . λ−1 · λ0λ1 . . . for n < 0
·λ0λ1 . . . for n = 0

·00 . . . 0λ0λ1 . . . for n > 0 .

Definition 2.3. A p-adic number a ∈ Qp is said to be a p-adic integer if this
canonical development contains only non negative powers of p. The set of p-adic
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integers is denoted by Zp. So we have

Zp =

{
∞

∑

k=0

λkp
k, 0 ≤ λk ≤ p− 1

}
=

{
a ∈ Qp : |a|p ≤ 1

}
.

Definition 2.4. A p-adic integer a ∈ Zp is said to be a p-adic unit if the first
digit λ0 in the p-adic development is different from zero. The set of p-adic units is
denoted by Z∗p. Hence we have

Z∗p =

{
∞

∑

k=0

λkp
k, λ0 6= 0

}
=

{
a ∈ Qp : |a|p = 1

}
.

Proposition 2.5. Let a be a p-adic number. Then a can be written as the product
a = pn · u, n ∈ Z, u ∈ Z∗p.

Definition 2.6. Let p be a prime number. Then the Hensel code of length M of

any p-adic number a = pm · u ∈ Qp is the pair (manta, expa), where the left most
M digits and the value m of the related p-adic development are called the mantissa
and the exponent, respectively. We use the notation H(p,M, a) where p is a prime
and M is the integer which specifies the number of digits of the p-adic development.
One writes

H(p,M, a) = (amam+1 . . . · a0a1 . . . at,m),
where M = |m|+ t+ 1.

See also [1] for more general results concerning the Hensel code.

Lemma 2.7. (Hensel’s Lemma) Let

F (x) = c0 + c1x+ c2x
2 + · · ·+ cnxn

be a polynomial whose coefficients are p-adic integers. Let

F
′

(x) = c1 + 2c2x+ · · ·+ ncnxn−1

be the derivative of F (x). Suppose a0 is a p-adic integer which satisfies F (a0) ≡ 0
(mod p) and F

′

(a0) 6≡ 0 (mod p). Then there exists a unique p-adic integer a such
that F (a) = 0 and a ≡ a0 (mod p).

Proof. For the proof of this result we refer the reader to [5]. ¤

The following theorem makes an important connection between p-adic num-
bers and congruences.

Theorem 2.8. A polynomial with integer coefficients has a root in Zp if and only

if it has an integer root modulo pk for every k ≥ 1.

Proof. For the proof see [5]. ¤
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A practical consequence of Theorem 2.8 is the following.

Proposition 2.9. A rational integer a not divisible by p has a square root in Zp

(p 6= 2) if and only if a is a quadratic residue modulo p.

Proof. Let P (x) = x2 − a. Then P ′

(x) = 2x. If a is a quadratic residue, then

a ≡ a 20 (mod p)

for some a0 ∈ {0, 1, 2, . . . , p− 1} . Hence P (a0) ≡ 0 (mod p). But

P ′(a0) = 2a0 6≡ 0 (mod p)

automatically since (a0, p) = 1, so that the solution in Zp exists by Hensel’s lemma.
Conversely, if a is a quadratic nonresidue, by Theorem 2.8 it has no square root in
Zp. ¤

This can actually be extended to

Corollary 2.10. Let p 6= 2 be a prime. An element x ∈ Qp is a square if and

only if it can be written x = p2ny2 with n ∈ Z and y ∈ Z∗p a p-adic unit.

Proof. For the proof of this result we refer the reader to [3]. ¤

3. MAIN RESULTS

Let a ∈ Q∗p be a p-adic number such that

|a|p = p−vp(a) = p−2m ,m ∈ Z.

If (xn)n is a sequence of p-adic numbers that converges to a p-adic number
α 6= 0, then from a certain rank one has

|xn|p = |α|p .

We also know that if there exists a p-adic number α such that α2 = a, then vp(a)
is even and

|xn|p = |α|p = p−m.

3.1 Fixed point method

To use the fixed point method we study the zeros of the equation f(x) = 0 by
studying a related equation x = g(x), with the condition that these two formula-
tions are mathematically equivalent. To improve the speed of convergence of the
sequence (xn)n, one defines a new sequence that converges more quickly toward the
solution of the equation proposed. The conditions that permit the determination
of the function g(x) are:

1) g(
√
a) =

√
a, g(1)(

√
a) = . . . = g(s−1)(

√
a) = 0, g(s)(

√
a) 6= 0,
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2) The polynomial g(x) must not have the square root of a in its coefficients.

In order to choose g(x), we know that if
√
a is a root of order s of (g(x) − √a),

then there is a polynomial h(x) such that

(2) g(x) =
√
a+ (x−

√
a)sh(x).

The conditions that permit the determination of h(x) are:

i. The polynomial g(x) must not have
√
a in its coefficients

ii. h(x) depends upon the natural number s.

To determine the formula for h(x), it is sufficient to work with the undetermined
coefficients and to write the wanted conditions.
Let’s consider the following cases.

Case 1: s = 1. We have

g(x) =
√
a+ (x−

√
a)h(x).

One chooses h(x) in order to make the square roots of a in the coefficients of g(x)
disappear. For this, we put

(3) h(x) = α0.

This gives α0 = 1 and

(4) g(x) = x.

Case 2: s = 2. We have

(5) g(x) =
√
a+ (x−

√
a)2h(x).

We put

(6) h(x) = α0 + α1x,

and get

α0 = −
1

a1/2
, α1 = −

1

2a
.

Then we have

(7) h(x) = − 1
2a
(x+ 2

√
a) and g(x) =

3

2
x− 1

2a
x3.

The sequence associated to g(x) is defined by

(8) ∀n ∈ N : xn+1 =
3

2
xn −

1

2a
x 3n .

Theorem 3.1. If xn0
is the square root of a of order r, then
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1) If p 6= 2, then xn+n0
is the square root of a of order 2nr − 2(2n − 1)m.

2) If p = 2, then xn+n0
is the square root of a of order 2nr − 2(m+ 1)(2n − 1).

Proof. Let (xn)n the sequence defined by (8). Then

(9) ∀n ∈ N : x2n+1 − a = −
1

4a2
(
4a− x 2n

) (
a− x 2n

)2
.

We put

Ω(x) = − 1

4a2
(
4a− x2

)
.

Since

(10) |4|p =





1

4
if p = 2

1 if p 6= 2,

we have

|Ω(xn0
)|p =

∣∣∣∣−
1

4a2
(
4a− x2n0

)∣∣∣∣
p

≤
∣∣∣∣
1

4

∣∣∣∣
p

·
∣∣∣∣
1

a2

∣∣∣∣
p

max
{
|4a|p ,

∣∣x2n0

∣∣
p

}

≤





p4m ·max
{
p−2m, p−2m

}
if p 6= 2

22 · 24mmax
{
2−2 · 2−2m, 2−2m

}
if p = 2

≤





p2m if p 6= 2

22m+2 if p = 2.

This gives ∣∣x2n0+1 − a
∣∣
p
= |Ω(xn0

)|p ·
∣∣a− x2n0

∣∣ 2
p
,

and so we have 



∣∣x2n0+1 − a
∣∣
p
≤ p2m · p−2r if p 6= 2,

∣∣x2n0+1 − a
∣∣
2
≤ 22m+2 · 2−2r if p = 2.

Then 



x2n0+1 − a ≡ 0 (mod p2r−2m) if p 6= 2,

x2n0+1 − a ≡ 0 (mod 22r−2(m+1)) if p = 2.

In this manner, we find that if p 6= 2, then

(11) ∀n ∈ N : x2n+n0
− a ≡ 0 (mod pγn),
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where the sequence (γn)n is defined by

(12) ∀n ∈ N : γn = 2nr − 2(2n − 1)m.

If p = 2, then

(13) ∀n ∈ N : x2n+n0
− a ≡ 0 (mod 2γ

′
n),

where (γ′n)n is defined by

(14) ∀n ∈ N : γ′n = γn − 2(2n − 1) = 2nr − 2(m+ 1)(2n − 1).

On the other hand, we have

(15) ∀n ∈ N : xn+1 − xn =
(
−xn
2a

) (
x 2n − a

)
.

Since

(16) |2|p =





1

2
if p = 2

1 if p 6= 2,

we have
|xn+n0+1 − xn+n0

|p =
∣∣∣
xn+n0

2a

∣∣∣
p
·
∣∣x2n+n0

− a
∣∣
p
.

Hence we obtain




|xn+n0+1 − xn+n0
|p ≤ p2m · p−m · p−γn if p 6= 2

|xn+n0+1 − xn+n0
|2 ≤ 2 · 22m · 2−m · 2−γ

′
n if p = 2,

and so 



xn+n0+1 − xn+n0
≡ 0 (mod pγn−m) if p 6= 2

xn+n0+1 − xn+n0
≡ 0 (mod 2γ

′
n−(m+1)) if p = 2.

Therefore, if p 6= 2, then

(17) ∀n ∈ N : xn+n0+1 − xn+n0
≡ 0 (mod pvn),

where

(18) ∀n ∈ N : vn = γn −m = 2nr − (2n+1 − 1)m.

If p = 2, then

(19) ∀n ∈ N : xn+n0+1 − xn+n0
≡ 0 (mod 2v

′
n),

where
∀n ∈ N : v′n = vn − (2n+1 − 1) = 2nr − (2n+1 − 1)(m+ 1). ¤
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Conclusion 3.2.

1. If p 6= 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order vn.

(b) If r − 2m > 0, then the number of iterations to obtain M correct digits is

(20) n =



ln
(
M −m

r − 2m

)

ln 2


+ 1.

(c) With Hensel codes the equation (8) takes the form

H(p, 2nr − (2n+1 − 1) ·m,x)=H(p,∞, 3/2) ·H(p, 2n−1r − (2n − 1) ·m,x)

−H(p,∞, 1/2) · H
3(p, 2n−1r − (2n − 1) ·m,x)

H2(p,∞, x) .

2. If p = 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order v
′
n.

(b) If r− 2(m+1) > 0, then the necessary number n of iterations to obtain M
correct digits is

(21) n =



ln

(
M − (m+ 1)

r − 2(m+ 1)

)

ln 2


+ 1.

(c) With the Hensel codes the equation (8) takes the form

H(2, 2nr − (2n+1 − 1) · (m+ 1), x)
=H(2,∞, 3/2) ·H(2, 2n−1r − (2n − 1) · (m+ 1), x)

−H(2,∞, 1/2) · H
3(2, 2n−1r − (2n − 1) · (m+ 1), x)

H2(2,∞, x) .

Let’s consider for p 6= 2 the sets defined by

(22)





S1 =
{
a ∈ Qp : |a|p = 1

}
if m = 0

S2 =
{
a ∈ Qp : |a|p < 1

}
if m > 0

S3 =
{
a ∈ Qp : |a|p > 1

}
if m < 0.

We put

(23) ∀n ∈ N :





v
(1)
n = 2nr if m = 0

v
(2)
n = 2nr − (2n+1 − 1)m if m > 0

v
(3)
n = 2nr − (2n+1 − 1)m if m < 0.
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For p = 2, we consider the sets defined by

(24)





B1 = {a ∈ Q2 : |a|2 = 4} if m = −1
B2 = {a ∈ Q2 : |a|2 < 4} if m > −1
B3 = {a ∈ Q2 : |a|2 > 4} if m < −1.

We put

(25) ∀n ∈ N :





v
′(1)
n = 2nr if m = −1
v
′(2)
n = 2nr − (2n+1 − 1)(m+ 1) if m > −1
v
′(3)
n = 2nr − (2n+1 − 1)(m+ 1) if m < −1.

Then we have the following corollary.

Corollary 3.3.

1. If p 6= 2, then we have the following.

(a) If m = 0, then we have quadratic convergence for all the p-adic numbers
which belong to the set S1.

(b) If m < 0, then the speed of convergence is faster for all the p-adic numbers
which belong to the set S3.

(c) If m > 0, then the speed of convergence is slower for all the p-adic numbers
which belong to the set S2.

2. If p = 2, then we have the following.

(a) If m = −1, then one has quadratic convergence for all the 2-adic numbers
which belong to B1.

(b) If m < −1, then the speed of convergence is faster for all the 2-adic numbers
which belong to the set B3.

(c) If m > −1, then the speed of convergence is slower for all the 2-adic numbers
which belong to the set B2.

Case 3: s = 3. We put

(26)





g(x) =
√
a+ (x−√a)3h(x)

h(x) = α0 + α1x+ α2x
2.

One finds that

(27)





h(x) =
1

a
+

9

8a
√
a
x+

3

8a2
x2

g(x) =
15

8
x− 5

4a
x3 +

3

8a2
x5.



Hensel codes of square roots of p-adic Numbers 41

The sequence associated to g(x) is defined by

(28) ∀n ∈ N : xn+1 =
3

8a2
x 5n −

5

4a
x 3n +

15

8
xn.

Let (xn)n the sequence defined by (28). Then

(29) ∀n ∈ N : x2n+1 − a =
(
a− x 2n

)3
(
− 1
a2
+
33

64a3
x 2n −

9

64a4
x 4n

)
.

Theorem 3.4. If xn0
is the square root of a of order r, then the following are true.

1) If p 6= 2, then xn+n0
is the square root of a of order 3nr − 2(3n − 1)m.

2) If p = 2, then xn+n0
is the square root of a of order 3nr − (3n − 1)(2m+ 3).

Proof. For the proof of this theorem, we use the method that we applied in the
case where s = 2. ¤

From this theorem, we get that if p 6= 2, then

(30) ∀n ∈ N : x2n+n0
− a ≡ 0 (mod pπn),

where (πn)n is defined by

(31) ∀n ∈ N : πn = 3nr − 2(3n − 1)m.

If p = 2, then

(32) ∀n ∈ N : x2n+n0
− a ≡ 0 (mod 2π

′
n),

where (π′n)n is given by

(33) ∀n ∈ N : π′n = 3
nr − (3n − 1)(2m+ 3).

On the other hand, we have

(34) ∀n ∈ N : xn+1 − xn =
(
a− x 2n

)( 7
8a

xn −
3

8a2
x3n

)
.

Then if p 6= 2, we have

(35) ∀n ∈ N : xn+n0+1 − xn+n0
≡ 0 (mod pΣn),

where (Σn)n is defined by

(36) ∀n ∈ N : Σn = 3nr − (2 · 3n − 1)m.

If p = 2, then

(37) ∀n ∈ N : xn+n0+1 − xn+n0
≡ 0 (mod 2Σ

′
n),
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with

(38) ∀n ∈ N : Σ′n = 3
nr −

(
(2 · 3n − 1)m+ 3n+1

)
.

Conclusion 3.5.

1. If p 6= 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order Σn.

(b) If r − 2m > 0, then the number n of necessary iterations to obtain M
correct digits is

(39) n =



ln
(
M −m

r − 2m

)

ln 3


+ 1.

(c) With Hensel codes the equation (28) takes the form

H(p, 3nr − (2 · 3n− 1) ·m,x)

=H(p,∞, 3/8) · H
5(p, 3n−1r − (2 · 3n−1 − 1) ·m,x)

H4(p,∞, x)

+H(p,∞,−5/4) · H
3(p, 3n−1r − (2 · 3n−1 − 1) ·m,x)

H2(p,∞, x)
+H(p,∞, 15/8) ·H(p, 3n−1r − (2 · 3n−1 − 1) ·m,x).

2. If p = 2, then the following are true.

(a) The speed of convergence of the sequence (xn)n is the order Σ
′
n.

(b) If r − (2m + 3) > 0, then the necessary number of iterations to obtain M
correct digits is

(40) n =



ln

(
M −m

r − (2m+ 3)

)

ln 3


+ 1.

(c) With Hensel codes the equation (28) takes the form

H(2, 3nr−
(
(2 · 3n − 1) ·m+ 3n+1

)
, x)

=H(2,∞, 3/8) · H
5(2, 3n−1r −

(
(2 · 3n−1 − 1) ·m+ 3n

)
, x)

H4(2,∞, x)

+H(2,∞,−5/4) · H
3(2, 3n−1r −

(
(2 · 3n−1 − 1) ·m+ 3n

)
, x)

H2(2,∞, x)
+H(2,∞, 15/8) ·H(2, 3n−1r −

(
(2 · 3n−1 − 1) ·m+ 3n

)
, x).
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3.2 Generalization

Generally we can construct an iterative method that converges to
√
a with a higher

convergence rate. To accelerate the rate of convergence of the sequence (xn)n as
much as one wants, it is necessary to solve the problem of letting

(41) g(x) =
√
a+ (x−

√
a)sh(x,

√
a)

and choosing the function h(x,
√
a) in order to make the square roots of a in

coefficients of a function g(x) disappear. We take the degree of the function h(x)
equal to s− 1, giving

(42) h(x) = α0 + α1x+ α2x
2 + · · ·+ αs−1xs−1 =

s−1
∑

j=0

αjx
j .

Then

(43) g(x) =
√
a+(x−

√
a)s(α0+α1x+α2x

2+· · ·+αs−1xs−1) =
2s−1
∑

j=0

cj(αi,
√
a )xj ,

where, if i ∈ {0, . . . , s− 1},
(44)

cj(αi,
√
a) =





√
a+ (−1)s(√a)sα0, if j = 0

j∑

i=0

αi

(
s

j − i

)
(−1)s−j+i(

√
a)s−j+i, if j ∈ {1, . . . , 2s− 2}

αs−1, if j = 2s− 1,
and

(45) αi = 0, ∀i > s− 1.
To generalize the fixed point method it is necessary that the coefficients of the even
powers of x are equal to zero and according to the different calculations that we
made, we suppose that this condition is also sufficient until a certain s sufficiently
large, i.e

(46) ∀j ∈ {0, . . . , s− 1} : {c2k}k∈{0,...,j} = {0} ⇔
√
a 6∈ {c2k+1}k∈{0,...,j} .

Therefore, to determine (αi)i∈{0,...,s−1} for any s, it is sufficient to solve the follow-
ing linear system

(47)





c0 =
√
a+ (−1)s(√a)sα0 = 0

c2(αi,
√
a) = 0

c4(αi,
√
a) = 0

...
c2s−2(αi,

√
a) = 0.

, 0 ≤ i ≤ s− 1
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We get

(48) g(x) = c1(a)x+ c3(a)x
3 + . . .+ c2s−1(a)x

2s−1.
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