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1. Introduction. For k ∈ N and p a prime number, define Γ ∗(k, p)
to be the smallest n ∈ N such that every diagonal form f(x1, . . . , xs) =
a1x

k
1 + · · · + asx

k
s with integer coefficients has a nontrivial zero over Qp

whenever s ≥ n. Define also

Γ ∗(k) = max
p prime

Γ ∗(k, p).

In 1963 Davenport and Lewis [4] proved that Γ ∗(k) ≤ k2 + 1 and
Γ ∗(p− 1, p) = (p− 1)2 + 1, and in 1967 Dodson [5] published an improved
bound, Γ ∗(k) ≤ 49

64k
2 + 1 if k + 1 is composite. For specific values of k,

a number of exact values of Γ ∗(k) have been computed. Lewis [9] showed
that Γ ∗(3) = 7. The combined work of Gray [6] and Chowla [3] shows
that Γ ∗(5) = 16. Bierstedt [1] appears to have been the first to show that
Γ ∗(7) = 22 and Γ ∗(11) = 45. These values were independently discovered
by Norton [10], who also gave the value Γ ∗(9) = 37. The values of Γ ∗(7) and
Γ ∗(9) were also discovered independently by Dodson [5]. Bovey [2] showed
that Γ ∗(8) = 39, and recently Knapp [7, 8] has determined the exact values
of Γ ∗(k) for all remaining k ≤ 32 with k + 1 composite. In unpublished
work, two undergraduate students of Knapp, Christopher Broll and Jessica
Jennings, have pushed this bound to k ≤ 39.

To state our main results we need some notation. For a fixed prime p,
write k = pτk0, with gcd(p, k0) = 1. Also, define

(1) γ = γ(k) =


1 if τ = 0,

τ + 1 if τ > 0 and p > 2,

τ + 2 if τ > 0 and p = 2,

and write k = γq + r, with q, r ∈ Z, 0 ≤ r < γ.

2010 Mathematics Subject Classification: Primary 11D72; Secondary 11D79, 11D88.
Key words and phrases: Artin’s conjecture, diagonal forms.
Received 13 June 2018; revised 7 December 2018.
Published online *.

DOI: 10.4064/aa180613-4-1 [1] c© Instytut Matematyczny PAN, 2019



2 H. Godinho et al.

Theorem 1.1. With the notation above, we have

(2) Γ ∗(k, p) ≤ (pγ − 1)q + pr,

and equality holds whenever p− 1 divides k.

Theorem 1.2. We have (1) Γ ∗(54) = 1049.

The p = 2 case of Theorem 1.1 is due to Knapp, and our proof proceeds
along the same lines. Suppose that f is a diagonal form in the number of
variables given in Theorem 1.1. First, we apply a “normalization” procedure
due to Davenport & Lewis which shows that we may write f = F0 + pF1 +
p2F2 + · · ·+ pk−1Fk−1, where each of F1, . . . , Fk−1 is a diagonal form whose
coefficients are not divisible by p, and we may make certain assumptions
about the number of variables in each of the forms. The proof now proceeds
inductively in the following manner. At each stage, we use a trivial extension
of a lemma due to Bovey [2] to show that either f has a nontrivial zero
or else we are able to find a set {Fa, Fa+1, . . . , Fa+τ} of subforms, disjoint
from the sets found in any previous stages, which has a “small” number of
variables. After repeating the inductive step q times, we are left with only r
remaining subforms, and these subforms must have a relatively large number
of variables between them. We are then able to use Bovey’s lemma on these
final subforms, along with the structure of the disjoint sets produced earlier,
to show that f has a nontrivial zero. This shows that Γ ∗(k, p) is at most
the bound given in the theorem. If it happens that (p − 1) | k, then we are
able to explicitly give a form in one fewer variable that has no nontrivial
p-adic zeros, showing that the number of variables given in the theorem is
the smallest that can guarantee that f has a nontrivial zero. This shows
that Γ ∗(k, p) equals the value in the theorem when (p− 1) | k.

The proof of Theorem 1.2 involves a combination of theory and brute-force
calculations. Suppose that f is a diagonal form of degree 54 in 1049 variables.
We need to show that f has a nontrivial p-adic zero for all primes p. For
p = 2, 3, we are done by Theorem 1.1. Then we use Chevalley’s theorem
and results of Dodson [5] to prove our result for all p except those for which
163 ≤ p ≤ 4159 and 54 | (p− 1). We then follow ideas of Bovey to develop a
functionQ(k, p, t) with the property that (for our purposes) ifQ(54, p, 20)<1,
then f has a nontrivial p-adic zero. A brute-force computation shows that this
inequality holds for all primes except p = 163. Finally, we perform a direct
calculation to show that every diagonal form of degree 54 in 1049 variables
must have a nontrivial 163-adic zero. We note that the only obstruction to
using these methods to compute other values of Γ ∗(k) is the computing time
necessary for evaluating Q(k, p, t) and for doing the direct calculation at the
end. We hope to come back to these ideas in a future article.

(1) This value was also discovered independently by Jessica Jennings (unpublished).
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It is appropriate here to briefly discuss the quality of Theorem 1.1. First,
we examine the situations in which Theorem 1.1 gives an equality. Suppose
that p − 1 divides k, and write k = pτ (p − 1)k1, with p - k1. If p > 2 and
either τ ≥ 2 or k1 ≥ 2, then the result that our expression equals the value of
Γ ∗(k, p) is new. (The result with p = 2 is due to Knapp [8]. The results with
k1 = 1 and τ = 0, 1 are given by Davenport and Lewis [4] and Dodson [5],
respectively.)

In the cases where we do not claim that our bound is an equality, we can
compare our results with the bounds for Γ ∗(k) given by Davenport & Lewis
and Dodson above. We can also compare it with Dodson’s bound (see [5])

Γ ∗(k, p) ≤
⌊
k

γ
(pγ − 1)

⌋
+ 1.

If γ | k, then our bound equals the bound of Dodson displayed above, and
our bound is better in all other cases. Moreover, our bound trivially implies

(3) Γ ∗(k, p) ≤ p

γk0
k2 + k,

and so our bound is better than the bounds for Γ ∗(k) mentioned above
whenever γk0 is suitably large compared to k. However, the situation is
better than this, since the pk2/(γk0) term in (3) is obtained under the
assumption that r = 0 (among others), while the k term is obtained under
the assumption that r = τ (among others). So our bound will in fact always
be somewhat smaller than the one in (3).

As mentioned above, the case p = 2 in Theorem 1.1 was proved by
Knapp in [8], and the case γ = 1 (i.e., p - k) is a direct consequence of [4,
Lemma 1] and [5, Lemmas 4.2.1 and 4.2.2]. Therefore, from this point on
we will assume each of the following:

(4)

• p ≥ 3;
• p | k, so that γ = τ + 1 ≥ 2;
• γ < k (this follows from the previous assumptions);
• s ≥ (pγ − 1)q + pr.

The proof of Theorem 1.1 starts with the simple observation that any
diagonal form f(x1, . . . , xs) can be written as

f =

m∑
i=0

pifi

for some m, where the subforms fi are diagonal forms of degree k whose
coefficients are all coprime to p. If m ≥ k, then for each l with k ≤ l ≤ m we
write l = δk + ρ, with ρ, δ ∈ Z and 0 ≤ ρ < k. Suppose that x is a variable
in fl with coefficient a. Then the term in f involving x is

plaxk = pρa(pδx)k = pρayk,
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where y = pδx. Repeating this argument for every variable in every subform
fl with k ≤ l ≤ m, we obtain a new equivalent form f∗,

(5) f∗ = f∗0 + pf∗1 + · · ·+ pk−1f∗k−1,

of degree k. Note that f∗ has a nontrivial zero in Qp if and only if f does.

Write v∗i for the number of variables in f∗i , and note that
∑k−1

i=0 v
∗
i = s.

Lemma 1.3 (Davenport–Lewis [4, Lemma 2]). Let n0, . . . , nk−1 ∈ R and
put nk+j = nj for all j ≥ 0. Let n0 + · · · + nk−1 = s. Then there exists a
number r such that

nr + · · ·+ nr+t−1 ≥ ts/k for t = 1, . . . , k.

Define now f∗k+j = f∗j and v∗k+j = v∗j , for j ≥ 0. It follows from Lem-
ma 1.3 that there exists a number r < k such that

v∗r + · · ·+ v∗r+t−1 ≥ ts/k

for t = 1, . . . , k. Replacing all the variables x of f∗0 , . . . , f
∗
r−1 by px we obtain

(see (5)) the form

G = pkf∗0 + pk+1f∗1 + · · ·+ pk+r−1f∗r−1 + prf∗r + · · ·+ pk−1f∗k−1

and hence

(6) p−rG = f∗r + pf∗r+1 + · · ·+ pk−r−1f∗k−1 + pk−rf∗0 + · · ·+ pk−1f∗r−1.

We can now rename p−rG as F and write

(7) F = F0 + pF1 + · · ·+ pk−1Fk−1.

If we now write vi for the number of variables in Fi, then our work shows
that v0 + · · · + vt−1 ≥ ts/k for t = 1, . . . , k. Clearly, if F has a nontrivial
p-adic solution, so does f .

Lemma 1.4. With the notation above, suppose that for some n ∈ N∪{0}
there is a vector z ∈ Zs such that

F (z) ≡ 0 (mod pn+γ)

and at least one of the entries of z corresponding to a variable in Fj, j ≤ n,
is coprime to p. Then z can be lifted to a nontrivial p-adic zero of F .

Proof. This is [8, Lemma 2.1]. The proof of this Hensel-type lemma
follows from [4, Lemma 4] and, if necessary, a cyclic permutation of F =∑k−1

i=0 p
iFi as in (6).

2. Proof of Theorem 1.1. We start by presenting a series of lemmas
that will be used in the proof of Theorem 1, especially the next lemma whose
proof is a straightforward modification of [2, proof of Lemma 1].
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Lemma 2.1. Let 0 ≤ n ≤ k − 1 and write Fi =
∑vi

j=1 aijx
k
ij, where none

of the coefficients aij are divisible by p. Suppose

(8)

v0 ≥ p,
v0 + v1 ≥ p2,

...

v0 + · · ·+ vn−1 ≥ pn.

Then, for N>n, the form F =
∑n

i=0 p
iFi represents at least min(

∑n
i=0 vi, p

N )
distinct residue classes modulo pN with xij = 0 or 1, and at least one x0j
equal to 1.

The next two lemmas will be used to prove that inequalities such as the
ones in (8) hold.

Lemma 2.2. Suppose that r is a real number and a is a positive integer
such that r > p−1 and ar > pa−1. Then tr > pt−1 whenever 2 ≤ t ≤ a−1.

Proof. Let f(t) = tr−pt+1 and consider t as a real variable. The lemma
follows if we prove that f(t) > 0 for 1 ≤ t ≤ a. By hypothesis, this is true
for t = 1 and t = a. We have f ′(t) = r − pt log p, so there exists only one
critical point of f , say t0. Moreover, f ′(t) > 0 for t < t0 and f ′(t) < 0 for
t > t0, which implies that t0 is a maximum point. If f(t) < 0 for some t
between 1 and a, then f(t) would have a minimum point, a contradiction.

Lemma 2.3. Let p be an odd prime, m, l ∈ N, m ≥ 2 and r ∈ Z with
0 ≤ r < m. Then⌈

t((pm − 1)l + pr)

ml + r

⌉
≥ pt for 1 ≤ t ≤ m− 1,

where d·e is the ceiling function.

Proof. By Lemma 2.2, it suffices to prove the conclusion for t = 1 and
t = m− 1. When t = 1, we will show that

(pm − 1)l + pr

ml + r
≥ p,

which clearly implies the inequality in the lemma. To see this, we note that
since m ≥ 2 and r is a nonnegative integer, we have pm−1 ≥ 2(p−1)m and
pr > (p− 1)r. So,

(pm − 1)l + pr

ml + r
>

2(p− 1)ml + (p− 1)r

ml + r
= p− 1 +

(p− 1)ml

ml + r

≥ p− 1 +
2ml

ml + (m− 1)
> p− 1 + 1 = p.
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Now suppose that t = m− 1 ≥ 2 (i.e. m ≥ 3). We will prove that

(m− 1)((pm − 1)l + pr) > (pm−1 − 1)(ml + r),

which again implies the assertion. The above inequality is equivalent to

(m− 1)pr + l + r + pm−1
(
(p(m− 1)−m)l − r

)
> 0.

Since (m− 1)pr + l + r > 0, it suffices to prove that l(p(m− 1)−m) ≥ r.
We will show that

l(p(m− 1)−m) ≥ m− 1,

which is sufficient since m− 1 ≥ r. By hypothesis we have

l(p(m− 1)−m) ≥ p(m− 1)−m ≥ 3(m− 1)−m = 2m− 3 ≥ m− 1,

where the last inequality follows since m ≥ 2.

At this point let us recall that F = F0+pF1+· · ·+pk−1Fk−1 is a diagonal
form of degree k = pτk0 = γq+ r, 0 ≤ r < γ, in s ≥ (pγ − 1)q+ pr variables,
where gcd(p, k0) = 1. Moreover, the analysis following Lemma 1.3 shows
that (perhaps after making a change of variables) we may assume that we
have the system of inequalities

(9) v0 + · · ·+ vt−1 ≥
t

k
((pγ − 1)q + pr) for t = 1, . . . , k.

As p ≥ 3, we see that k = pτk0 ≥ τ + 1 = γ. This implies q > 0.

Since γ ≤ k, the inequalities in (9) hold for t = 1, . . . , γ−1, and therefore
Lemma 2.3 gives us

v0 ≥ p,
v0 + v1 ≥ p2,

...

v0 + · · ·+ vγ−2 ≥ pγ−1.

First, let us assume that r = 0. In this case, s ≥ (pγ − 1)q + 1, and (9)
gives us

v0 + · · ·+ vγ−1 ≥
γ[(pγ − 1)q + 1]

γq
= pγ − 1 +

1

q
> pγ − 1.

Since v0 + · · · + vγ−1 must be an integer, we obtain v0 + · · · + vγ−1 ≥ pγ .
Together with the above system of inequalities, Lemma 2.1 shows that F
represents at least min(

∑γ−1
i=0 vi, p

γ) = pγ distinct residue classes modulo pγ

(and in particular represents 0) with xij = 0 or 1 and x0j = 1 for some j.
By Lemma 1.4, F has a nontrivial p-adic zero.

Now, assume instead that r > 0. In this situation, all the inequalities
in the displayed system above continue to hold, but Lemma 1.3 no longer
guarantees that v0 + · · · + vγ−1 ≥ pγ . However, if this final inequality does
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hold, then F has a nontrivial p-adic zero as above. So from now on, we will
assume that

∑γ−1
i=0 vi < pγ .

Let I = {0, 1, . . . , k − 1} and define

T0 = {0, 1, . . . , γ − 1},
T1 = {1, 2, . . . , γ},

...

Tk−γ = {k − γ, . . . , k − 1}.
Let T = {T0, T1, . . . , Tk−γ} and suppose that there exist pairwise disjoint
sets S1, . . . , Sh ∈ T such that for each i we have Si = {si, si + 1, . . . , si + τ},
where

(10)
• vsi + · · ·+ vsi+t−1 ≥ pt for t = 1, . . . , γ − 1,
• vsi + · · ·+ vsi+τ < pγ .

Observe that 0 ≤ h ≤ q since k = γq + r and 0 ≤ r < γ. In fact, since T0
satisfies (10), we can take S1 = T0 and hence may assume that h ≥ 1.

Consider the 1-1 correspondence between the nonempty subsets U ⊂ I
and the subforms of F = F0 + pF1 + · · ·+ pk−1Fk−1 given by

U = {u1, . . . , us} ↔ FU = pu1Fu1 + · · ·+ pusFus .

Let J = I − S1 ∪ · · · ∪ Sh and write J = {j1, . . . , jm}, where m = |J | =
γ(q−h)+r. Consider the subform FJ , in N ≥ (pγ−1)(q−h)+pr variables,
so that vj1 + · · ·+ vjm = N . By Lemma 1.3, there exists l such that

(11) vjl + · · ·+ vjl+t−1
≥ tN/m

for t = 1, . . . ,m, where as usual we define vjm+i = vji .

Lemma 2.4. With the notation above, suppose that h = q. Then there
exists a p-adic zero of F .

Proof. Since h=q, we have m=r and N≥pr. Combining this with (11),
we see that

vjl + · · ·+ vjl+t−1
≥ tpr/r

for t = 1, . . . , r. Since vjl ≥ pr/r ≥ p and vjl + · · · + vjl+r−1
≥ pr, it follows

from Lemma 2.2 that

(12) vjl + · · ·+ vjl+t−1
≥ pt

for 1 ≤ t ≤ r. Let z be the smallest integer such that jl+z+1 6= jl+z + 1,
so that jl+i = jl + i for i = 0, 1, . . . , z. Observe that if z = r − 1, then the
condition jl+r 6= jl+r−1 + 1 is empty. Suppose first that jl+z 6= k − 1. Then
jl+z + 1 ∈ Si for some i. Since Si = {si, . . . , si + τ} and jl+z /∈ S1 ∪ · · · ∪Sh,
we get jl+z + 1 = si. On the other hand, jl, . . . , jl+z are consecutive. As a
consequence, (12) implies that

vjl + · · ·+ vjl+t ≥ p
t+1
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for t = 0, 1, . . . , z. By Lemma 2.1, the congruence

F ∗ =

z∑
i=0

piFl+i ≡ 0 (mod pz+1)

has a solution ξ whose entries are 0 or 1 and at least one variable from Fl
equals 1. Then H(ξ) = pjlF ∗(ξ) is congruent to 0 modulo pjl+z+1 = psi .
Now, by Lemma 2.1, the form FSi represents all multiples of psi modulo
psi+τ . Since H(ξ) ≡ 0 (mod psi), there exists a solution to the congruence
H + FSi ≡ 0 (mod psi+τ ) satisfying the conditions of Lemma 1.4, which
gives a nontrivial p-adic solution for F .

If it should happen that jl+z = k − 1, then the above idea works with
a slight modification. Suppose that x1, . . . , xt are the variables involved in
the subforms F0, . . . , Fτ and consider the form

G = F (px1, . . . , pxt, xt+1, . . . , xs).

This has the effect of transforming the original form F in (7) into

G = pτ+1Fτ+1 + · · ·+ pk−1Fk−1 + pkF0 + pk+1F1 + · · ·+ pk+τFτ .

We can now consider S1 to be the set {k, k + 1, . . . , k + τ}, so that s1 = k.
Then the same reasoning as above shows that G has a nontrivial p-adic
solution, and hence F does as well.

The next lemma completes the proof of the first assertion of Theorem 1.1.

Lemma 2.5. With the same conditions as above, if h < q then either F
has p-adic zeros or there exists another set Sh+1, disjoint from S1∪· · ·∪Sh,
satisfying (10).

Proof. By (11) we have

(13) vjl + · · ·+ vjl+t−1
≥ t(p

γ − 1)(q − h) + pr

γ(q − h) + r

for t = 1, . . . , γ − 1, and since q > h we see that γ < m. By Lemma 2.3,

vjl + · · ·+ vjl+t−1
≥ pt for t = 1, . . . , γ − 1.

As before, let z be the smallest positive integer such that jl+z+1 6=
jl+z + 1, so that jl+i = jl + i for i = 0, 1, . . . , z. Observe that if jl+z 6= k− 1,
then jl+z + 1 = si ∈ Si = {si, . . . , si + τ} for some i. Now, jl, jl+1, . . . , jl+z
are consecutive. If z < γ − 1 then we can proceed as in Lemma 2.4 (in
which z ≤ r − 1 ≤ γ − 2) and obtain a p-adic zero for F . Note that even if
jl+z = k − 1, the proof of Lemma 2.4 shows that F has a p-adic zero.

Assume then that z ≥ γ − 1 = τ . If

vjl + · · ·+ vjl+γ−1
≥ pγ ,

then together with (13) we can apply Lemma 2.1 and obtain a solution
of FJ ≡ 0 (mod pjl+γ) with at least one variable from Fjl nonzero. Then
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Lemma 1.4 shows that F has a nontrivial p-adic zero. On the other hand, if

vjl + · · ·+ vjl+γ−1
< pγ ,

then we may set Sh+1 = {jl, jl + 1, . . . , jl + τ}, and then Sh+1 is disjoint
from S1 ∪ · · · ∪ Sh and satisfies the properties in (10).

In order to see that this completes the proof of the first assertion of
Theorem 1.1, note that the initial work we did after assuming that r > 0
shows that we may take S1 = T0, so that we may have h = 1. If 1 < q, then
Lemma 2.5 shows that either F (and hence f) has a nontrivial p-adic zero
or else we may take h = 2. Repeating this process, we see that either f has
a p-adic zero or else we may take h = q. If this last possibility occurs, then
Lemma 2.4 shows that f has a nontrivial p-adic zero.

We now prove the second assertion of Theorem 1.1 by giving an example
of a form of degree k = pτ (p−1)k1, p - k1, in s = (pγ−1)q+pr−1 variables
with no nontrivial p-adic zeros.

First note that if p |x then xk≡0(mod pγ), and otherwise xk≡1(mod pγ).
The second case follows from the fact that ϕ(pγ) = pτ (p−1), where ϕ is the
Euler ϕ-function.

Following the discussion above, consider the additive form

(14)

F =

pγ−1∑
i=1

xki + pγ
2(pγ−1)∑
i=pγ

xki + · · ·+ p(q−1)γ
q(pγ−1)∑

i=(q−1)(pγ−1)+1

xki + pqγ
q(pγ−1)+pr−1∑
i=q(pγ−1)+1

xki .

The next lemma is a trivial consequence of Euler’s theorem, and so we
will not give a proof.

Lemma 2.6. Let H =
∑pt−1

i=1 xki with (p − 1) | k. If t ≤ γ, then the con-
gruence H ≡ 0 (mod pt) has no nontrivial solution.

Now, let F be as in (14) and suppose that F (ξ) = 0 for some nonzero
ξ ∈ Zp. By the homogeneity of F , we may suppose that some coordinate
of ξ is a unit in Zp, and in particular this coordinate is coprime to p. Let
m = pγ − 1 for convenience, and rename the variables of F so that

• Fj = Fj(x1,j , . . . , xm,j) for j = 0, . . . , q − 1,
• Fq = Fq(x1,q, . . . , xpr−1,q),
• ξ = (ξ1,0, . . . , ξm,0, . . . , ξ1,q−1, . . . , ξm,q−1, η1, . . . , ηpr−1).

Suppose that the first coordinate of ξ coprime to p corresponds to a variable
in Fj for some fixed j < q. Without loss of generality we may suppose that
this coordinate is ξ1,j . Then ξu,v = pξ∗u,v for v ≤ j − 1. Therefore

F (ξ) = pkH + pγjFj(ξ1,j , . . . , ξm,j) + pγ(j+1)G = 0,
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where we have written

H =

j−1∑
i=0

piγFi(ξ
∗
1,i, . . . , ξ

∗
m,i),

G = p−γ(j+1)
( q−1∑
i=j+1

piγFi(ξ1,i, . . . , ξm,i) + pqγFq(η1, . . . , ηpr−1)
)
.

Hence
p−γjF (ξ) = Fj(ξ1,j , . . . , ξm,j) + pγG+ pk−γjH = 0,

and in particular

p−γjF (ξ) ≡ Fj(ξ1,j , . . . , ξm,j) ≡ 0 (mod pγ),

which contradicts Lemma 2.6.
Suppose instead that the first coordinate coprime to p is one of the p-adic

integers η1, . . . , ηpr−1. In the same way as above we obtain

p−qγF (ξ) =

pr−1∑
i=1

ηki + pk−γqG
′

= 0.

In particular, since k − γq = r we have

p−qγF (ξ) ≡
pr−1∑
i=1

ηki ≡ 0 (mod pr),

which is again impossible by Lemma 2.6.

3. Proof of Theorem 1.2. In this section we use Theorem 1.1 and some
computations to prove Theorem 1.2. By Theorem 1.1 we have Γ ∗(54, 2) =
127 and Γ ∗(54, 3) = 1049. Suppose now that p > 3.

Let d = gcd(54, p − 1). It is well known that the congruence x54 ≡
a (mod p) has a solution if, and only if, the congruence xd ≡ a (mod p)
has a solution. This implies that the set of 54th powers and the set of dth
powers in Fp are the same. Since p does not divide 54, we have γ = 1,
and without loss of generality we may replace 54 by d in any congruence
a1x

54
1 + · · ·+ anx

54
n ≡ 0 (mod p). Since p is odd, we have 2 | (p− 1), and so

it is sufficient to consider d ∈ {2, 6, 18, 54}.
By Chevalley’s theorem, if d = 2, 6, or 18, then solubility is ensured if

(in the notation of Section 2) v0 ≥ 3, 7, or 19, respectively. These values
follow from Lemma 1.3 when we have s ≥ 109, s ≥ 325, or s ≥ 973 variables,
respectively. So

• Γ ∗(54, p) ≤ 109 if gcd(54, p− 1) = 2;
• Γ ∗(54, p) ≤ 325 if gcd(54, p− 1) = 6;
• Γ ∗(54, p) ≤ 973 if gcd(54, p− 1) = 18.
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Now we need to analyze d = 54, and from this point onwards only
consider primes p ≡ 1 (mod 54). Assuming we have 1049 variables, we
deduce from Lemma 1.3 and the remarks afterwards that v0 ≥ 20. The next
lemma is a trivial consequence of (the proof of) Lemma 2.4.1 of [5].

Lemma 3.1. Consider the congruence

a1x
k
1 + · · ·+ atx

k
t ≡ 0 (mod p).

If p does not divide either k or any of the coefficients ai, then the congruence
above has a solution with at least one variable nonzero modulo p whenever

p > (d− 1)(2t−2)/(t−2) where d = (k, p− 1).

When k = d = 54, this lemma ensures the desired solubility for p >
(53)38/18. That is, we have Γ ∗(54, p) ≤ 1049 for each p > 4367.

For the remaining primes, we proceed as in [2, Lemmas 4 and 5]. It
is well-known that the number of solutions of the polynomial congruence
f(x) ≡ 0 (mod p) is given by

1

p

∑
x (mod p)

p−1∑
t=0

ep(tf(x)),

where ep(x) = exp(2πix/p). Applying this to the congruence

c1x
k
1 + · · ·+ csx

k
s ≡ 0 (mod p),

we see that if this congruence has only the trivial solution, then
p−1∑

x1,...,xs=0

p−1∑
t=0

ep(c1x
k
1t) · · · ep(csxks t) = p.

This is equivalent to
p−1∑
t=1

S(c1t) · · ·S(cst) = p− ps,

where we write

S(b) =

p−1∑
x=0

ep(x
kb).

Using Hölder’s inequality, and also the fact that if t runs through the nonzero
residue classes modulo p then so does cit, we obtain

p−1∑
t=1

|S(t)|s ≥ ps − p.

If we now define, for s > 1,

Q(k, p, s) =
1

ps − p

p−1∑
t=1

|S(t)|s,
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we see that if our congruence has only the trivial solution for even one choice
of coefficients, then Q(k, p, s) ≥ 1. This immediately leads to the following
lemma.

Lemma 3.2. If Q(k, p, s) < 1 then every congruence

c1x
k
1 + · · ·+ csx

k
s ≡ 0 (mod p)

has a nontrivial solution.

We now use Lemma 3.2 to begin the computational study of the remain-
ing primes with p ≡ 1 (mod 54). Using Maple to compute Q(54, p, 20) for
these primes, we obtain the values in the table below.

Table 1. Table of values of Q(54, p, 20)

Q(54, p, 20) for p ≤ 4367 with p ≡ 1 (mod 54)

Prime p 109 163 271 379

Q(54, p, 20) 15.246914 4.839553 0.210817 0.013238

Prime p 433 487 541 757

Q(54, p, 20) 0.163891 0.000753 0.024424 0.000560

Prime p 811 919 1297 1459

Q(54, p, 20) 1.70 · 10−5 6.52 · 10−5 2.17 · 10−5 1.03 · 10−8

Prime p 1567 1621 1783 1999

Q(54, p, 20) 2.08 · 10−7 3.40 · 10−6 9.83 · 10−10 1.14 · 10−8

Prime p 2053 2161 2269 2377

Q(54, p, 20) 2.36 · 10−6 2.01 · 10−5 3.17 · 10−3 1.57 · 10−8

Prime p 2539 2593 2647 2917

Q(54, p, 20) 9.60 · 10−10 2.19 · 10−8 1.30 · 10−10 1.54 · 10−8

Prime p 2971 3079 3187 3457

Q(54, p, 20) 7.49 · 10−10 1.81 · 10−9 8.98 · 10−10 7.30 · 10−9

Prime p 3511 3673 3727 3889

Q(54, p, 20) 6.11 · 10−12 6.09 · 10−9 3.83 · 10−11 3.74 · 10−11

Prime p 3943 4051 4159

Q(54, p, 20) 3.58 · 10−10 3.86 · 10−11 1.35 · 10−11

From the table, we see that

Q(54, p, 20) < 1, ∀p 6= 109, 163.

Hence having v0 = 20 is sufficient for p 6= 109, 163. As noted above, this
condition is guaranteed whenever F has at least 1049 variables, and hence
Γ ∗(54, p) ≤ 1049 for these primes.

The next lemma is a direct consequence of [5, Lemmas 2.2.1 and 4.2.1].
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Lemma 3.3. Suppose that gcd(k, p− 1) = 1
2(p− 1). Then

Γ ∗(k, p) ≤ k ·
⌊

log p

log 2

⌋
+ 1.

It follows from this lemma that

Γ ∗(54, 109) ≤ 325.

Finally, we evaluate Γ ∗(54, 163). The only 54th powers modulo 163 are
0, 1, 58, and 104. Using Maple, we can verify that every congruence
ax + by + cz ≡ 0 (mod 163) has a solution with x, y, z ∈ {1, 58, 104}. It
follows that solubility is ensured whenever v0 ≥ 3, which we have seen oc-
curs whenever F has at least 109 variables. Hence Γ ∗(54, 163) ≤ 109.

While this is enough to complete the proof of Theorem 1.2, we can
actually go a bit further here. Note that if a is not a 54th power (mod 163),
then the congruence ax54 − y54 ≡ 0 (mod 163) has no nontrivial solution.
Then an argument similar to the one following Lemma 2.6 shows that the
form

(ax541 − y541 ) + 163(ax542 − y542 ) + · · ·+ 16353(ax5454 − y5454)

has 108 variables and no nontrivial 163-adic zeros. This gives us the exact
value

Γ ∗(54, 163) = 109,

and completes the proof of Theorem 1.2.
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Abstract (will appear on the journal’s web site only)

For k ∈ N and p a prime number, define Γ ∗(k, p) to be the smallest n ∈ N
such that every diagonal form a1x

k
1 + · · ·+asx

k
s with integer coefficients has

a nontrivial zero over Qp whenever s ≥ n. Define also

Γ ∗(k) = max
p prime

Γ ∗(k, p).

We prove an upper bound for Γ ∗(k, p) and show that it is equal to Γ ∗(k, p)
whenever p− 1 divides k. We also find the exact value of Γ ∗(54).
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