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Abstract

In this paper we consider systems of diagonal forms with integer coefficients in which each form has

a different degree. Every such system has a nontrivial zero in every p-adic field Qp provided that

the number of variables is sufficiently large in terms of the degrees. While the number of variables

required grows at least exponentially as the degrees and number of forms increase, it is known that if p

is sufficiently large then only a small polynomial bound is required to ensure zeros in Qp. In this paper

we explore the question of how small we can make the prime p and still have a polynomial bound. In

particular, we show that we may allow p to be smaller than the largest of the degrees.

1. Introduction

In this paper, we study conditions under which the system of homogeneous equations

F1(x) = a11x
k1
1 + · · · + a1sx

k1
s = 0

...
...

...

FR(x) = aR1x
kR
1 + · · · + aRsx

kR
s = 0

(1)
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with aij ∈ Z and k1, . . . , kR ∈ Z+ is guaranteed to have a nontrivial solution in p-adic

integers. By nontrivial, we mean simply that at least one of the variables is not equal to

zero. A conjecture commonly attributed to Artin suggests that regardless of the values

of the coefficients, a nontrivial zero in Zs
p should exist for each prime p provided only that

we have

s >
R∑

i=1

k2
i .

If R = 1, then Davenport & Lewis [5] have shown that this bound is correct. Unfortu-

nately, the following theorem of Lewis & Montgomery [8] shows that this conjecture is

false, and that any such bound on s must in fact exhibit exponential growth.

Theorem 1 (Lewis-Montgomery). Suppose p is an odd prime. Let M be a pos-

itive integer, and let M be a set of K integers in the range [M, 2M − 1]. Suppose that

there are s integers x1, . . . , xs, not all divisible by p, such that

x
(p−1)m
1 + · · ·+ x(p−1)m

s ≡ 0 (mod p(p−1)M )

for all m in M. Then s ≥ pK .

On the other hand, Ax & Kochen [1] have shown that if we ask only that a nontrivial

solution exists in Zs
p for p sufficiently large, then the Artin bound is sufficient. It is

therefore an interesting problem to determine how small we can take the prime p to be

before exponential growth is required. In particular, how small can we make p and still

obtain polynomial bounds for s?

In this paper, we explore this problem in the situation where the degrees of the

polynomials are all different. In order to write down our conclusions, we introduce the

following notational convention. Let Γ∗
p(k1, . . . , kR) be the smallest number such that

any system of forms as in (1) has a nontrivial solution in Zs
p whenever s ≥ Γ∗

p(k1, . . . , kR).

For example, if k1, . . . , kR are fixed, then the result of Ax & Kochen above states that

one has

Γ∗
p(k1, . . . , kR) ≤ 1 +

R∑
i=1

k2
i
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for sufficiently large p. The purpose of this paper is to prove the following theorem.

Theorem 2. Suppose that R ≥ 2 and let k1 > k2 > · · · > kR be positive integers.

For a fixed prime p, define numbers τi and k̃i, (1 ≤ i ≤ R), so that ki = pτi k̃i with

(p, k̃i) = 1.

i) Define

S1 =
R∑

i=1

k̃i
pτi+1 − 1

p− 1
.

If p > k1 − kR + 1, then we have

Γ∗
p(k1, . . . , kR) ≤ (S1 + 1)

R∑
i=1

iki −
R∑

i=1

ki + R.

This implies the bound

Γ∗
p(k1, . . . , kR) ≤ 3

2
R

(
R∑

i=1

ki

)2

+ (R− 1)

(
R∑

i=1

ki

)
+ R

for such p.

ii) Define

S2 =
R∑

i=1

k̃i
pτi+3 − 1

p− 1
.

If we have

p > 1 + max
{

1, k1 − kR−1,
k1 − kR

2

}
,

then we have

Γ∗
p(k1, . . . , kR) ≤ (S2 + 1)

R∑
i=1

iki −
R∑

i=1

ki + R.

This implies that for these p we have the bound

Γ∗
p(k1, . . . , kR) ≤ 3

2
R(k1 − kR + 1)2

(
R∑

i=1

ki

)2

+ (R− 1)

(
R∑

i=1

ki

)
+ R.

This shows in particular that polynomial bounds are possible for primes smaller than

the largest degree.
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We prove this theorem through a method similar to the one used in [7]. First we

apply a normalization process which shows that we need only consider systems which

have certain desirable properties. Then we will consider the system (1), with each

equation reduced modulo a power of p, and determine a number of variables which

guarantees that this system of congruences will have a nonsingular solution. Finally,

we will lift this solution of congruences to a nontrivial solution of (1) in Zs
p through a

version of Hensel’s Lemma.

2. Normalization

In this section we describe the process by which we normalize the system of equations

and derive a few properties of normalized systems. Our normalization process essentially

combines the two used by Wooley in [10] and [11]. Suppose that F = (F1, . . . , FR) is

a system of additive forms as in (1), and that the prime p is fixed. We define two

fundamental operations on F. First, we may write

F′ = bF = (b1F1, . . . , bRFR)

for some vector b of nonzero rational numbers. Second, we may make a change of

variables of the form xi 7→ p−vixi, where the vi are rational integers, yielding a system

of the form

F′′ = F(pv1x1, . . . , p
vsxs).

Note that these operations commute. A system G with integer coefficients is said to

be equivalent to F if G can be obtained from F through a combination of the above

operations, i.e. if we can write

G = bF(pv1x1, . . . , p
vsxs).

Now we wish to define a function ∂(F) whose value depends on the coefficients of

F1, . . . , FR and which behaves nicely under the fundamental operations. Unfortunately,

this will require a fair amount of notation. Define K = k1k2 · · · kR and for each i let
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k′i = K/ki. For any fixed integer r with R ≤ r ≤ s, we define

Sr = {(j1, . . . , jR) ∈ {1, . . . , r}R : ji 6= ji′ when i 6= i′}

and note that if we set L = |Sr|, then we have

L = r(r − 1) · · · (r −R + 1).

For each σ = (j1, . . . , jR) ∈ Sr, write

Dσ(F) = det
([

a
k′i
ijm

]
1≤i,m≤R

)
.

Further, for fixed numbers m1, . . . ,mR−1 with r + 1 ≤ m1 ≤ · · · ≤ mR−1 ≤ s, we define

M1 = {r + 1, . . . ,m1}

M2 = {m1 + 1, . . . ,m2}
...

MR = {mR−1 + 1, . . . , s},

taking Mi to be empty if mi = mi−1. Also, for i = 1, . . . , R, we set

Ni =
RL

r
k′i.

Finally, we define

∂(F) =
∏

σ∈Sr

Dσ(F)
∏

j∈M1

aN1
1j

∏
j∈M2

aN2
2j · · ·

∏
j∈MR

aNR
Rj .

We now show that ∂(F) behaves nicely under the fundamental operations.

Lemma 3. Suppose that F is a system of forms as in (1) with integral coefficients.

Then the following statements are true.

i) If we set F′ = bF = (b1F1, . . . , bRFR), then we have

∂(F′) =

(
R∏

i=1

b
(L+|Mi|RL/r)k′i
i

)
∂(F).

ii) If we set F′′ = F (pv1x1, . . . , p
vsxs), then we have

∂(F′′) = pRLKv/r∂(F),

where we have set v = v1 + · · ·+ vs.
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Proof. To prove the first statement, let F′ be the system

F ′
i = a′i1x

ki
1 + · · ·+ a′isx

ki
s (i = 1, . . . , R).

If F′ = bF, then we have a′ij = biaij for each pair i, j. If σ = (j1, . . . , jR) ∈ Sr, then

Dσ(F′) = det
([

b
k′i
i a

k′i
ijm

]
i,m

)
= b

k′1
1 · · · bk′R

R det
([

a
k′i
ijm

]
i,m

)
= b

k′1
1 · · · bk′R

R Dσ(F),

whence we obtain∏
σ∈Sr

Dσ(F′) =
∏

σ∈Sr

b
k′1
1 · · · bk′R

R Dσ(F) = b
k′1L
1 · · · bk′RL

R

∏
σ∈Sr

Dσ(F). (2)

Moreover, for each i = 1, . . . , R, we have∏
j∈Mi

(
a′ij
)Ni =

∏
j∈Mi

bNi
i aNi

ij = b
|Mi|Ni

i

∏
j∈Mi

aNi
ij = b

|Mi|RLk′i/r
i

∏
j∈Mi

aNi
ij . (3)

Putting (2) and (3) together, we obtain

∂(F′) =

(
b
k′1L
1 · · · bk′RL

R

R∏
i=1

b
|Mi|RLk′i/r
i

)
∂(F)

=

(
R∏

i=1

b
(L+|Mi|RL/r)k′i
i

)
∂(F),

as desired.

In order to prove the second statement, we let F′′ be the system

F ′′
i = a′′i1x

ki
1 + · · ·+ a′′isx

ki
s (i = 1, . . . , R).

If F′′ = F(pv1x1, . . . , p
vsxs), then we have a′′ij = pkivjaij for each pair i, j. If σ =

(j1, . . . , jR) ∈ Sr, then we have

Dσ(F′′) = det
([(

a′′ijm

)k′i]
i,m

)
= det

([
pKvjm a

k′i
ijm

]
i,m

)
= pKvj1 · · · pKvjR det

([
a

k′i
ijm

]
i,m

)
= pKvj1 · · · pKvjR Dσ(F).
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Therefore we have

∏
σ∈Sr

Dσ(F′′) =
∏

σ=(j1,...,jR)∈Sr

pKvj1 · · · pKvjR Dσ(F)

=
∏

σ∈Sr

pK(vj1
+···+vjR

)
∏

σ∈Sr

Dσ(F)

= pK
P

(vj1
+···+vjR

)
∏

σ∈Sr

Dσ(F),

where the sum in the last line is over all σ ∈ Sr. Now there are L choices for σ, and

each of j1, . . . , jr appears in RL/r of these choices. Hence we have

∑
σ∈Sr

(vj1 + · · ·+ vjR) =
RL

r
v1 + · · ·+ RL

r
vr =

RL

r

∑∗
vj ,

where we use the notation
∑∗ to represent a sum over all j ≤ r. Therefore we have

∏
σ∈Sr

Dσ(F′′) = p(RLK
P∗ vj)/r

∏
σ∈Sr

Dσ(F). (4)

Additionally, for each i with 1 ≤ i ≤ R we have∏
j∈Mi

(
a′′ij
)Ni =

∏
j∈Mi

(
pkivjaij

)Ni

=
∏

j∈Mi

pkivjNi
∏

j∈Mi

aNi
ij

= pkiNi
Pi vj

∏
j∈Mi

aNi
ij = p(RLK

Pi vj)/r
∏

j∈Mi

aNi
ij ,

(5)

where
∑i represents a sum over all j ∈ Mi. Putting (4) and (5) together, we obtain

∂(F′′) = pRLK
P∗ vj/rpRLK

P1 vj/r · · · pRLK
PR vj/r∂(F)

= pRLKv/r∂(F).

This completes the proof of the lemma. �

Suppose that F is a system of additive forms with integer coefficients. A standard

argument (see for example page 572 of [6]) shows that in order to prove Theorem 2 for

all systems of additive forms, it suffices to prove it for systems such that ∂(F) 6= 0.

We say that F is p-normalized if ∂(F) 6= 0 and the power of p dividing ∂(F) is less

than or equal to the power of p dividing ∂(G) for any system G of forms with integer
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coefficients which is equivalent to F. Note that since any system is equivalent to one

which is p-normalized, it suffices to prove the theorem for p-normalized systems. We

now prove a lemma showing that p-normalized systems are explicit in a relatively large

number of variables when considered modulo p.

Lemma 4. Suppose that F is a p-normalized system of additive forms. Then the

following statements are true.

i) If N is the number of variables in F which are explicit when F is considered modulo

p, then one has

N ≥
R∑

i=1

(
|Mi|+

r

R

) 1
ki

.

ii) If qi is the number of variables explicit modulo p in the form Fi of degree ki, then

one has

qi ≥
(
|Mi|+

r

R

) 1
ki

.

Proof. To prove the first statement, suppose (by relabeling if necessary) that the

variables x1, . . . , xN are the variables which are explicit modulo p. Consider the system

F′ = p−1F(px1, . . . , pxN , xN+1, . . . , xs),

which has integer coefficients. The system F′ is obtained from F via a combination of

the fundamental operations with b1 = · · · = bR = p−1 and v = v1 + · · ·+ vs = N . Then

we have

∂(F′) =

(
pRLKN/r

R∏
i=1

(p−1)(L+|Mi|RL/r)k′i

)
∂(F)

= pA∂(F),

where we have set

A =
RLKN

r
−

R∑
i=1

(
|Mi|

RL

r
+ L

)
k′i.

Since the system F is p-normalized, we must have A ≥ 0, and the first part of the lemma

follows.
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For the second statement, fix i and suppose that the variables in the form Fi which

are explicit modulo p are x1, . . . , xqi . Consider the system

F′′ = bF(px1, . . . , pxqi , xqi+1, . . . , xs),

where bi = p−1 and bj = 1 if j 6= i. Note that F′′ is a system of forms with integer

coefficients. Then we have v = qi and hence ∂(F′′) = pB∂(F), where

B =
RLKqi

r
− |Mi|RLk′i

r
− Lk′i.

Since the system F is p-normalized and F′′ is equivalent to F, we must have B ≥ 0, and

part ii) of the lemma follows. This completes the proof of the lemma. �

3. Preliminary Lemmata

In this section we establish some lemmata which will be needed in the proof of

Theorem 2. Our first lemma, due to Schanuel [9], provides a bound on the number of

variables necessary to solve a system of congruences modulo various powers of a prime

p.

Lemma 5. For 1 ≤ i ≤ R, let Fi be a (not necessarily homogeneous) polynomial

of degree ki in N variables with coefficients in Zp and no constant term. Also let

Tp = {x ∈ Zp : xp = x} be the set of Teichmüller representatives of {0, 1, 2, . . . , p− 1}.

Then the system of equations

Fi(x1, . . . , xN ) ≡ 0 (mod pvi) (1 ≤ i ≤ R)

has a nontrivial solution in TN
p provided that

N >

R∑
i=1

ki
pvi − 1
p− 1

.

Our next lemma is a version of Hensel’s Lemma, which allows us to lift a nonsingular

solution of a system of congruences to a p-adic solution. This is Lemma 4 of [7].
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Lemma 6. Consider the system (1). Let p be a prime number, and for 1 ≤ i ≤ R we

define numbers τi and k̃i such that ki = pτi k̃i with (p, k̃i) = 1. Further, for 1 ≤ i ≤ R,

we define

γi =

 τi if p is odd

τi + 1 if p = 2.

Let h be a positive integer and suppose that z is a nontrivial solution of the system of

congruences

Fi(x) ≡ 0 (mod p2h+γi−1) (1 ≤ i ≤ R) (6)

such that the matrix 
a11z

k1−1
1 · · · a1sz

k1−1
s

...
...

aR1z
kR−1
1 · · · aRsz

kR−1
s

 (7)

has an R×R submatrix M such that

det M 6≡ 0 (mod ph). (8)

Then the system (1) has a solution y ∈ Zs
p such that y ≡ z (mod ph).

Our final goal for this section is to prove Lemma 10, a result stating that under

certain conditions the determinant of a matrix similar to (7) can be made to be nonzero

modulo a power of a prime p. This will be needed later to ensure that our solutions of

congruences are nonsingular. In order to prove this lemma, we will need some properties

of Bhargava’s generalized factorial function (see [2, 3, 4]), and refer the reader to [4]

for the definition of a p-ordering and the definitions of the functions vk(S, p), wp(a) and

k!S . In order to prove Lemma 10, we will need the following preliminary lemmata.

Lemma 7. The sequence 0, 1, 2, . . . of nonnegative integers is a p-ordering for Z for

any prime p.

This is Proposition 6 of [4].
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Lemma 8. Let p be a prime number, and let S be the set S = Z − pZ. Then the

sequence

(a0, a1, a2, . . .) = (1, 2, 3, . . . , p− 1, p + 1, . . . , 2p− 1, 2p + 1, . . .)

is a p-ordering for S.

Proof. In the definition of a p-ordering, we may take a0 to be any element of S. Hence

it is permissible to set a0 = 1. Now suppose that a0, . . . , ak are the first k +1 terms of a

p-ordering for S. We wish to show that ak+1 is allowable for the next term. We divide

the proof into two cases. First, if p - (ak +1), then ak+1 = ak +1. Let mp be the largest

multiple of p such that mp < ak. Suppose by way of contradiction that we cannot use

ak+1 as the next term. Then there is some number y ∈ S − {a0, . . . , ak} such that

wp((y − a0) · · · (y − ak)) < wp((ak+1 − a0) . . . (ak+1 − ak)).

Since any element of S is relatively prime to p, we have

wp

(
ak∏
i=0

(y − i)

)
= wp

 k∏
j=0

(y − aj)

 · wp

 m∏
j=0

(y − jp)


< wp

 k∏
j=0

(ak+1 − aj)

 · wp

 m∏
j=0

(ak+1 − jp)


= wp

(
ak∏
i=0

(ak+1 − i)

)
,

where the inequality holds because

wp

 m∏
j=0

(y − jp)

 = wp

 m∏
j=0

(ak+1 − jp)

 = 1

since ak+1 and y are both relatively prime to p. However we cannot have an element

y ∈ S − {a0, . . . , ak} such that

wp

(
ak∏
i=0

(y − i)

)
< wp

(
ak∏
i=0

(ak+1 − i)

)
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since then the sequence 0, 1, 2, . . . would not be a valid p-ordering of Z, contradicting

Lemma 7.

Now suppose that p | (ak + 1), and write ak + 1 = mp. Then ak+1 = ak + 2. As

before, suppose by way of contradiction that there is an element y ∈ S − {a0, . . . , ak}

with

wp((y − a0) · · · (y − ak)) < wp((ak+1 − a0) · · · (ak+1 − ak)).

Again noting that both y and ak+1 are prime to p, we have

wp

(
ak+1∏
i=0

(y − i)

)
= wp

(
k∏

i=0

(y − ai)

)
· wp

 m∏
j=0

(y − jp)


< wp

(
k∏

i=0

(ak+1 − ai)

)
· wp

 m∏
j=0

(ak+1 − jp)


= wp

(
ak+1∏
i=0

(ak+1 − i)

)
,

and the existence of such an element y again violates Lemma 7. Hence, after having

chosen a0, . . . , ak, the element ak+1 is allowable for the next term of a p-ordering on S.

So the lemma is true by induction.�

Lemma 9. Suppose that the sequence a0, a1, . . . is a p-ordering for the set S. A

polynomial F of degree k, written in the form

F (x) =
k∑

n=0

en(x− a0)(x− a1) · · · (x− an−1),

vanishes on S modulo pr if and only if en is a multiple of pr/(pr, n!S) for 0 ≤ n ≤ k.

This is Lemma 14 of [4].

Lemma 10. Consider the matrix

B =


a11x

k1−1
1 · · · a1Rxk1−1

R
...

...

aR1x
kR−1
1 · · · aRRxkR−1

R

 , (9)
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and assume that a11a22 · · · aRR 6≡ 0 (mod p). Then the following statements hold.

i) If p > k1 − kR + 1, then there exist integers t2, . . . , tR, all relatively prime to p, such

that if we set x2 = t2x1, . . . , xR = tRx1 and let x1 be any integer relatively prime to p,

then det B 6≡ 0 (mod p).

ii) If we have

p > 1 + max
{

k1 − kR−1,
k1 − kR

2

}
,

then there exist integers t2, . . . , tR, all relatively prime to p, such that if we set x2 =

t2x1, . . . , xR = tRx1 and let x1 be any integer relatively prime to p, then det B 6≡ 0

(mod p2).

Note that if R = 1 we interpret the condition in part ii) of the lemma as p > 1.

Proof. First note that if we set x2 = t2x1, . . . , xR = tRx1, then we have

det B = xk1+···+kR−R
1 (t2 · · · tR)kR−1 det C,

where C is the matrix

C =


a1,1 a1,2t

k1−kR
2 · · · a1,Rtk1−kR

R
...

...
...

aR−1,1 aR−1,2t
kR−1−kR

2 · · · aR−1,Rt
kR−1−kR

R

aR,1 aR,2 · · · aR,R

 .

Since we require x1, t2, . . . , tR to all be nonzero modulo p, the matrix B has the desired

property if and only if det C is nonzero modulo the appropriate power of p.

We prove part i) of the lemma by induction on R. If R = 1, then det B = a11x
k1−1
1 .

If a11 and x1 are both relatively prime to p, then so is detB. Now suppose that the

statement is true for R = M − 1. We wish to prove that it holds for R = M . In this
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situation, we have

B =


a11x

k1−1
1 · · · a1Mxk1−1

M
...

...

aM1x
kM−1
1 · · · aMMxkM−1

M

 ,

and the matrix C becomes

C =


a1,1 a1,2t

k1−kM
2 · · · a1,M tk1−kM

M
...

...
...

aM−1,1 aM−1,2t
kM−1−kM

2 · · · aM−1,M t
kM−1−kM

M

aM,1 aM,2 · · · aM,M

 .

Now consider the upper left-hand (M − 1) × (M − 1) submatrix of B. By the

inductive hypothesis, choose integers t2, . . . , tM−1 all nonzero modulo p such that the

determinant of this matrix is nonzero modulo p whenever x1 is relatively prime to p.

Hence the determinant of the upper left-hand (M − 1)× (M − 1) submatrix D of C is

also nonzero modulo p. Then we have

C =


D

a1,M tk1−kM
M
...

aM−1,M t
kM−1−kM

M

aM,1 aM,2 · · · aM,M−1 aM,M


and by expanding along the rightmost column we get

det C = aMM det D + p(tM ),

where

p(tM ) = c1t
k1−kM
M + · · ·+ cM−1t

kM−1−kM

M

is a polynomial with no constant term. If c1, . . . , cM−1 are all divisible by p, then we

can set tM = 1 and obtain

det C ≡ aMM det D 6≡ 0 (mod p).
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If some of the ci are nonzero modulo p, then we note that detC is a polynomial of degree

at most k1 − kM . If p− 1 > k1 − kM , then detC cannot be divisible (as a polynomial)

by

tp−1
M − 1 = (tM − 1)(tM − 2) · · · (tM − (p− 1)).

Since the ring (Z/pZ)[tM ] has unique factorization, there must be a value for tM which

is nonzero modulo p and for which detC 6≡ 0 (mod p). Therefore the values we have

chosen for t2, . . . , tM ensure that det B 6≡ 0 (mod p) whenever (x1, p) = 1. This

completes the proof of part i) of the lemma.

To prove part ii), first note that if R = 1, then the same argument as above shows

that the statement is true whenever p > 1. Now consider the matrix B given in (9).

Since p > k1 − kR−1 + 1, we can choose values of t2, . . . , tR−1 such that the upper left-

hand (R−1)×(R−1) submatrix of B will be nonsingular modulo p whenever (x1, p) = 1.

As in the proof of part i), this implies that the upper left-hand (R−1)× (R−1) subma-

trix D of C will also be nonsingular modulo p. Thus we just need to choose a value for tR.

We can now write

det C = p(tR) = ck1−kR
tk1−kR
R + · · ·+ ckR−1−kR

t
kR−1−kR

R + aRR det D.

Note that this polynomial is slightly different than the one we called p(tM ) earlier. We

wish to show that this polynomial does not vanish modulo p2 on the set S = Z − pZ.

Since aRR det D 6≡ 0 (mod p), this is certainly true if cki−kR
≡ 0 (mod p) for 1 ≤ i ≤

R − 1. If at least one of these coefficients is nonzero modulo p, let d be the smallest

number such that ckd−kR
6≡ 0 (mod p).

Let a0, a1, . . . be the p-ordering for S given in Lemma 8, and write p(tR) in the form

p(tR) =
k1−kR∑
n=0

en(tR − a0) · · · (tR − an−1), (10)

as in Lemma 9. Note that because of the way we chose d, we have p | en whenever
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n > kd − kR. It is then not too hard to see that we must have

ekd−kR
≡ ckd−kR

6≡ 0 (mod p).

We now show that if p > 1 + (k1 − kR)/2, then ekd−kR
is not a multiple of

p2

(p2, (kd − kR)!S)
.

Once this is done, our proof will be complete by Lemma 9.

In order to prove this divisibility criterion, we examine the values of p2/(p2, n!S).

First note that we have

n!S =
∏

q prime

vn(S, q)

and that vn(S, q) is a power of q. (Again, see [4] for an elementary explanation of

Bhargava’s factorial function and this notation.) Since p is prime, the terms vn(S, q)

with q 6= p do not contribute anything to (p2, n!S) and so we have

(p2, n!S) = (p2, vn(S, p)).

By simply writing out the terms a0, a1, . . . for the p-ordering for S given in Lemma 8,

it is easy to see that

vn(S, p) =


1 if n ≤ p− 2

p if p− 1 ≤ n ≤ 2p− 3

p2Ln, Ln ∈ Z if n ≥ 2p− 2.

Hence we see that

p2

(p2, n!S)
=

p2

(p2, vn(S, p))
=


p2 if n ≤ p− 2

p if p− 1 ≤ n ≤ 2p− 3

1 if n ≥ 2p− 2.

Note that if p > 1 + (k1 − kR)/2, then k1 − kR ≤ 2p− 3. Since kd − kR ≤ k1 − kR, this

implies that
p2

(p2, (kd − kR)!S)
= p or p2.

But this number cannot divide ekd−kR
since ekd−kR

is nonzero modulo p. This completes

the proof of the lemma.�
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4. The Proof of Theorem 2

Since the proofs of the first bound in both parts of Theorem 2 are essentially iden-

tical, we prove them together. In what follows, setting m = 1 proves the first bound in

part i) of the theorem and setting m = 2 proves the first bound in part ii). We remark

first that if there is some number N such that any system like (1) in N variables has a

nontrivial p-adic solution, then any such system in s > N variables also has one. This

can be seen by simply setting s−N of the variables equal to zero, leaving a system in

N variables. It therefore suffices to assume that we have

s = (Sm + 1)
R∑

i=1

iki −
R∑

i=1

ki + R

variables and show that the system (1) has a nontrivial p-adic solution.

Since it is enough to prove each part of the theorem for p-normalized systems of

forms, we will assume throughout this section that all systems are p-normalized. How-

ever, we must define the quantities r and |M1|, . . . , |MR| used in the normalization

process. To do this, we set r = R and

|Mi| = iki(Sm + 1)− ki (1 ≤ i ≤ R).

For each i, Lemma 4 yields

qi ≥
(
|Mi|+

r

R

) 1
ki

= i(Sm + 1)− 1 +
1
ki

.

But since qi must be an integer, this implies that we have qi ≥ i(Sm + 1). In other

words, for each i the form Fi of degree ki contains at least i(Sm + 1) variables which

are explicit when Fi is reduced modulo p.

We now relabel the variables in our system using the following procedure. Since

q1 ≥ Sm + 1, we can choose Sm + 1 variables which are explicit when F1 is reduced
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modulo p. Let U1 be the set containing these variables. Since q2 ≥ 2(Sm + 1), we can

choose a set U2 containing Sm+1 variables which are explicit when F2 is reduced modulo

p and which are not in U1. We can continue this procedure to define sets U3, . . . ,UR,

where each Ui contains Sm + 1 variables, all of which are explicit when Fi is considered

modulo p, such that U1, . . . ,UR are pairwise disjoint. We now relabel the variables in

such a manner that for each i, the variables in the set Ui are labeled

xi, xR+i, . . . , xRSm+i.

If i > R(Sm + 1), then we set xi = 0. This leaves us with a system

F1(x) = a1,1x
k1
1 + · · ·+ a1,R(Sm+1)x

k1

R(Sm+1) = 0
...

...
...

...

FR(x) = aR,1x
kR
1 + · · ·+ aR,R(Sm+1)x

kR

R(Sm+1) = 0,

(11)

which has the property that for 0 ≤ j ≤ Sm, we have

a1,jR+1a2,jR+2 · · · aR,jR+R 6≡ 0 (mod p).

In other words, if we let A1 be the matrix of coefficients of the first R variables, A2

be the matrix of coefficients of the second R variables, and so on, then each diagonal

element of each of these matrices is nonzero modulo p.

To find a Qp-integral solution to (11), we will first find a solution of the system

a1,1x
k1
1 + · · ·+ a1,R(Sm+1)x

k1

R(Sm+1) ≡ 0 (mod p2m+τ1−1)
...

...
...

aR,1x
kR
1 + · · ·+ aR,R(Sm+1)x

kR

R(Sm+1) ≡ 0 (mod p2m+τR−1)

(12)

which is nonsingular modulo pm, where we recall that each τi is defined so that ki = pτi k̃i

with (p, k̃i) = 1. Note that since both parts of the theorem require p to be odd, the

powers of p in (12) are the powers required in Lemma 6 when h = m.
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If the bounds on p given in the statement of the theorem hold, then Lemma 10 tells

us that for each j with 0 ≤ j ≤ Sm, we can find integers tjR+2, . . . , tjR+R such that if

we set

xjR+i = tjR+ixjR+1, (2 ≤ i ≤ R)

and let Bj be the matrix

Bj =


a1,jR+1x

k1−1
jR+1 · · · a1,jR+Rxk1−1

jR+R
...

...

aR,jR+1x
kR−1
jR+1 · · · aR,jR+RxkR−1

jR+R

 ,

then we have detBj 6≡ 0 (mod pm) whenever xjR+1 6≡ 0 (mod p).

After making the identifications above, we obtain a new system

c1,1x
k1
1 + c1,R+1x

k1
R+1 + · · ·+ c1,RSm+1x

k1
RSm+1 ≡ 0 (mod p2m+τ1−1)

...
...

...
...

cR,1x
kR
1 + cR,R+1x

kR
R+1 + · · ·+ cR,RSm+1x

kR
RSm+1 ≡ 0 (mod p2m+τR−1).

(13)

Suppose that we can find a solution to this system with at least one of the variables,

say xjR+1, not divisible by p. This would lead to a solution of the system (12) in which

the matrix Bj satisfies detBj 6≡ 0 (mod pm). Then the solution of (12) lifts to a non-

trivial solution of (11) by Lemma 6, and this gives us a nontrivial solution of (1). Thus

it suffices to show that the system (13) has a nontrivial solution.

We find a nontrivial solution of (13) with the variables restricted to the Teichmüller

set Tp = {x ∈ Zp : xp = x}. Note that when x ∈ Tp, we have

xki = xpτi k̃i = xk̃i .

Therefore any solution of the system

c1,1x
k̃1
1 + c1,R+1x

k̃1
R+1 + · · ·+ c1,RSm+1x

k̃1
RSm+1 ≡ 0 (mod p2m+τ1−1)

...
...

...

cR,1x
k̃R
1 + cR,R+1x

k̃R
R+1 + · · ·+ cR,RSm+1x

k̃R
RSm+1 ≡ 0 (mod p2m+τR−1)

(14)
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with all the variables in Tp is also a solution of (13). By Lemma 5, we can solve (14)

nontrivially whenever the number of variables is greater than

R∑
i=1

k̃i
p2m+τi−1 − 1

p− 1
= Sm.

Since we have Sm + 1 variables, there exists a nontrivial solution to (14) with each

variable in Tp. As mentioned above, this is also a nontrivial solution of (13), and this

leads to a nontrivial solution of (1). The first bound in each part of the theorem follows.

To finish the proof, we need to show that the second bound in each part of the

theorem holds. For part i), note that we have

S1 =
R∑

i=1

k̃i
pτi+1 − 1

p− 1
=

p

p− 1

R∑
i=1

ki −
R∑

i=1

k̃i

p− 1
.

Since p ≥ 3, we obtain

S1 + 1 < 1 +
p

p− 1

R∑
i=1

ki

≤ 1 +
3
2

R∑
i=1

ki,

and since i ≤ R, we have
R∑

i=1

iki ≤ R

R∑
i=1

ki.

From the first bound in part i), we then find that

Γ∗
p(k1, . . . , kR) ≤ 3

2
R

(
R∑

i=1

ki

)2

+ (R− 1)

(
R∑

i=1

ki

)
+ R,

as desired. For part ii), note that if we have

p > k1 − kR + 1,

then part i) of the theorem applies and yields a smaller bound than given in part ii).

Hence we may assume that

p ≤ k1 − kR + 1.
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Then since we are assuming that p ≥ 3, we have

S2 + 1 = 1 +
R∑

i=1

k̃i
pτi+3 − 1

p− 1

< 1 +
R∑

i=1

k̃ip
τi+3

p− 1

= 1 +
p

p− 1
p2

R∑
i=1

ki

≤ 1 +
3
2
(k1 − kR + 1)2

R∑
i=1

ki.

Therefore we obtain

(S2 + 1)
R∑

i=1

iki <

(
1 +

3
2
(k1 − kR + 1)2

R∑
i=1

ki

)
R∑

i=1

Rki

=
3
2
R(k1 − kR + 1)2

(
R∑

i=1

ki

)2

+ R

(
R∑

i=1

ki

)
,

and the second bound in part ii) of the theorem follows easily. This completes the proof

of the theorem.�
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