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Michael P. Knapp

1. Introduction

In a recent paper [8], we considered the system F of homogeneous

additive forms

F1(x) = a11x
k1
1 + · · ·+ a1sx

k1
s

...
...

...

FR(x) = aR1x
kR
1 + · · ·+ aRsx

kR
s

with coefficients in a p-adic field Qp. If we had R ≥ 2, k1 > k2 >

· · · > kR (in particular, the degrees of the forms were all different) and

p > k1 − kR + 1, then we gave a bound on s, polynomial in terms

of the degrees, which guarantees that the system F = 0 has a non-

trivial solution in p-adic integers. One could view this as a “hybrid”

between the results of Ax & Kochen [2] and Lewis & Montgomery [9].
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The Ax-Kochen theorem states that the (smaller) bound

s > k2
1 + · · ·+ k2

R

suffices provided that p is sufficiently large, but gives no bound on

how large p needs to be. The Lewis-Montgomery bound, on the other

hand, implies that any bound on s which works for all primes must

exhibit exponential growth. Thus one may think of the results in [8]

as bounding how small the prime p can be before exponential growth

on s is required.

The purpose of the present paper is to eliminate the restriction in

our previous result that the degrees of the forms be distinct. In this

situation, we are now able to prove that a polynomial bound on s

suffices for any system, provided that p is mildly large. In particular,

we prove the following theorem.

Theorem 1. Let p be a prime number. Consider the system F = 0 of

diagonal forms with coefficients in Zp given by

(1)

F1(x) = a11x
k1
1 + · · ·+ a1sx

k1
s = 0

...
...

...
...

FR(x) = aR1x
kv
1 + · · ·+ aRsx

kv
s = 0.

Suppose that k1 > k2 > · · · > kv are the distinct degrees of the forms,

and that for 1 ≤ i ≤ v there are Ri forms of degree ki. Assume that
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p > max{k1 − kv + 1, 2}. If we have

s ≥ 3

2
R

(
v∑

i=1

Riki

)2

+ R
v∑

i=1

Riki −
v∑

i=1

ki + v

then this system has a solution with each variable in Zp and at least

one variable not equal to 0.

Note that in this theorem,
∑v

i=1 ki represents the sum of the distinct

degrees in the system, and
∑v

i=1 Riki represents the sum of the degrees

with multiplicities taken into account.

If all of the coefficients are in Z, then Theorem 1 says that the system

(1) has a nontrivial integral solution in every p-adic field Qp for which

p is at least the given bound. Note that if v ≥ 2, then Theorem 1

implies that the bound

s ≥ 3

2
R3 (k1 + k2 + · · ·+ kv)

2

suffices for these primes. One can compare this with the result given

in [4] for systems of forms which all have the same degree (although

this result is improved in [6]).

Theorem 1 is a trivial consequence of the following theorem, which

is unfortunately somewhat more complicated to state.
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Theorem 2. Let F(x1, . . . , xs) be a system as in Theorem 1, and as-

sume again that p > max{k1 − kv + 1, 2}. For 1 ≤ i ≤ v, define

the numbers τi and k̃i so that ki = pτi k̃i for each i, with (p, k̃i) = 1.

Further, define

t = 1 +
v∑

j=1

Rj k̃j
pτj+1 − 1

p− 1
.

If we have

s ≥ t

v∑
i=1

(1 + R1 + · · ·+ Ri−1)Riki −
v∑

i=1

ki + v

then the system F = 0 has a solution with each variable in Zp and at

least one variable not equal to zero.

We note that Theorem 1 follows from Theorem 2 since each of the Ri

is at least 1 and p/(p − 1) is at most 3/2. We also mention that we

only require k1 > · · · > kv as a convenience in the proof of Lemma 8

below. If we replace the expression k1 − kv in these theorems by

(largest degree)− (smallest degree),

then we may relabel the degrees to possibly obtain a smaller bound on

s.

Our proof of Theorem 2 is essentially a three-step process. First, we

apply a normalization procedure which allows us to assume that the
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system F has certain desirable properties. Next we reduce the forms

in F modulo various powers of p, obtaining a system of congruences,

which we show must have a nonsingular solution. Finally, we are able

to lift this nonsingular solution to a solution of (1) through an appli-

cation of Hensel’s lemma.

To this end, Section 2 of this paper gives the notation that we will use

throughout the proof and some preliminary results. Section 3 describes

our normalization procedure and proves that normalized systems have

the properties we will need. In Section 4, we prove an auxiliary result

stating that under certain conditions, a particular matrix can be guar-

anteed to be nonsingular modulo a prime p. This lemma will eventually

guarantee that our solution of congruences is a nonsingular solution.

Finally, in Section 5 we use the results of the preceding sections to

complete the proof of Theorem 2.

2. Notation and Preliminaries

Although much of the notation to be used throughout this paper is

given in the statements of Theorems 1 and 2, we repeat it here to have

it all available in one location. Let p be a prime number. We will
5



consider systems of the shape

F1(x) = a11x
k1
1 + · · ·+ a1sx

k1
s = 0

...
...

...
...

FR(x) = aR1x
kv
1 + · · ·+ aRsx

kv
s = 0,

where the first R1 forms are of degree k1, the next R2 forms are of

degree k2, and so on. Note that we have R1 +R2 + · · ·+Rv = R. Here,

k1 > k2 > · · · > kv are the distinct degrees of the forms, and all of the

coefficients are elements of Zp. Given the degrees and the prime p, we

define numbers τi and k̃i so that ki = pτi k̃i for each i and (p, k̃i) = 1.

Other notational conveniences that we will use require more context to

define, and so we will defer those definitions until a more appropriate

point.

Next, we state a few lemmata which will be needed as we complete

the proof of Theorem 2. The first of these is a theorem of Alon [1,

Theorem 1.2], which guarantees that a polynomial of a particular shape

is not identically zero. This will be useful in Section 4 when we show

that we can guarantee that certain matrices have a nonzero determinant

modulo p.

Lemma 1. Let F be an arbitrary field, and let f = f(x1, . . . , xs) be a

polynomial in F[x1, . . . , xs]. Suppose the degree of f is
∑s

i=1 ti, where
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each ti is a nonnegative integer, and suppose the coefficient of
∏s

i=1 xti
i

in f is nonzero in F. Then, if Y1, . . . , Ys are subsets of F with |Yi| > ti,

then there exist y1 ∈ Y1, y2 ∈ Y2, . . . , ys ∈ Ys so that f(y1, . . . , ys) 6= 0.

Our next lemma appears to have been independently discovered by

Browkin [3] and Schanuel [11]. This is a version of Chevalley’s Theo-

rem for congruences modulo powers of a prime. That is, this lemma

provides a number of variables sufficient to guarantee that a system of

congruences modulo powers of a fixed prime has a nontrivial solution.

Lemma 2. Suppose that f1, . . . , fR are (not necessarily homogeneous)

polynomials without constant terms, and for each i, let di be the (total)

degree of fi. Here we make no restrictions on the degrees, and in par-

ticular they need not be distinct. Consider the system of congruences

fi(x1, . . . , xs) ≡ 0 (mod pτi), (1 ≤ i ≤ R).

If we have

s >
R∑

i=1

di(p
τi − 1)

p− 1
,

then this system has a nontrivial solution in which each variable lies in

the Teichmüller set

Tp = {x ∈ Zp : xp = x}.
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The final lemma in this section is a version of Hensel’s Lemma. This

is Lemma 4 of [7], which shows that a nonsingular solution of a system

of homogeneous additive congruences can be lifted to a p-adic solution

of the system.

Lemma 3. Consider a system of additive equations

(2)

F1(x) = a11x
d1
1 + · · ·+ a1sx

d1
s = 0

...
...

...
...

FR(x) = aR1x
dR
1 + · · ·+ aRsx

dR
s = 0,

where we again make no assumptions about the degrees of the forms.

Let p be a prime number, and for 1 ≤ i ≤ R we define numbers τi and

d̃i such that di = pτi d̃i with (p, d̃i) = 1. Further, for 1 ≤ i ≤ R, we

define

γi =


τi if p is odd

τi + 1 if p = 2.

Let h be a positive integer and suppose that z is a nontrivial solution

of the system of congruences

Fi(x) ≡ 0 (mod p2h+γi−1), (1 ≤ i ≤ R)
8



such that the matrix
a11z

d1−1
1 . . . a1sz

d1−1
s

...
...

aR1z
dR−1
1 . . . aRsz

dR−1
s


has an R×R submatrix M such that

det M 6≡ 0 (mod ph).

Then the system (2) has a solution y ∈ Zs
p such that y ≡ z (mod ph).

If a solution of (2) modulo various powers of p satisfies the determinant

condition above, we will say that this solution is nonsingular modulo ph.

3. Normalization

In this section we define our normalization procedure and show that

if the system (1) is normalized, then it is explicit in a large number

of variables when considered modulo p. That is, when a normalized

system is reduced modulo p, a large number of variables will appear in

at least one form with a nonzero coefficient. Since our normalization

originates with the one given by Davenport & Lewis in [5] for systems

of additive forms of equal degrees, we begin by recalling the function
9



they used to normalize such systems. Suppose that we have a system

F of R homogeneous additive forms

Fi(x) = ai1x
k
1 + · · ·+ aisx

k
s , (1 ≤ i ≤ R)

all of degree k. Let [aj]1≤j≤s be the matrix of coefficients of the system,

where aj is the vector of coefficients of the variable xj. Define the

function

Θ(F) =
∏

1≤j1<j2<···<jR≤s

det([ajn ]1≤n≤R).

In [5, Lemma 16], Davenport & Lewis showed that Θ satisfies the

following properties.

Lemma 4. 1) If a system F′ is defined by

F′(x) = F(pw1x1, p
w2x2, . . . , p

wsxs),

then we have

Θ(F′) = pkRMw/sΘ(F),

where M = s(s− 1) · · · (s−R + 1) and w = w1 + · · ·+ ws.

2) If a system F′′ is defined by taking linear combinations of the

forms in F, so that

F ′′
i =

R∑
j=1

dijFi (1 ≤ i ≤ R),
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then we have

Θ(F′′) = DMΘ(F),

where D = det([dij]1≤i,j≤R).

We now turn to our situation, where the forms may have different

degrees. Given a system F, we first define two fundamental operations

which may be performed on the forms, similar to the ones mentioned

in Lemma 4. First, we may multiply each variable by a power of p,

yielding a new system

F′(x) = F(pw1x1, . . . , p
wsxs).

Second, we may take linear combinations of the forms, provided that

for each linear combination, the forms involved all have the same degree

and the total number of forms of each degree does not change. That

is, we may form a new system F′′ defined by

F ′′
i (x) =

∑
n

deg Fn=deg Fi

dinFn(x).

Note that these operations commute. If a system G with coefficients in

Zp can be obtained from F through a combination of these operations,

we will say that G is equivalent to F. Note that when F and G are

equivalent, F possesses a nontrivial zero if and only if G does.
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Next, for positive integers j, a, b with 1 ≤ j ≤ v and b−a+1 ≥ Rj, let

(Fj, a, b) be the subsystem of F consisting only of the forms of degree

kj and only the variables xi with a ≤ i ≤ b. For example, if F is the

system of forms

xk1
1 + 2xk1

2 + 3xk1
3

4xk2
1 + 5xk2

2 + 6xk2
3

7xk2
1 + 8xk2

2 + 9xk2
3 ,

then (F2, 2, 3) is the system

5xk2
2 + 6xk2

3

8xk2
2 + 9xk2

3 .

We define a function ∂j(F, a, b) by

∂j(F, a, b) = Θ(Fj, a, b).

That is, we define ∂j by applying the Davenport-Lewis function to

the subsystem (Fj, a, b) of F. Note that performing a combination of

the fundamental operations on F yields a combination of fundamental

operations on (Fj, a, b). This is because if we form a linear combination

of the forms of F, we must use forms of the same degree, and because

we do not change the number of forms of degree kj. Hence Lemma 4

applies to ∂j, and so we immediately get the following lemma.
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Lemma 5. 1) If the system F′ is defined by F′ = F(pw1x1, . . . , p
wsxs),

then we have

∂j(F
′, a, b) = pkjRjMjw/(b−a+1)∂j(F),

where Mj = (b−a+1)(b−a) · · · (b−a−Rj +2) and w = wa + · · ·+wb.

2) If the system F′′ is defined by

F ′′
i =

∑
n

deg Fn=deg Fi

dinFn(x),

then we have

∂j(F
′′, a, b) = D

Mj

j ∂j(F, a, b),

where Dj = det([din]deg Fn=deg Fi=kj
).

Now we can begin to define the function we will use to normalize

F. Pick integers 1 < n0 < n1 < · · · < nv = s such that n0 ≥ R and

ni − ni−1 ≥ Ri for each i. Define numbers Mi and Li by

Mi = n0(n0 − 1) · · · (n0 −Ri + 1)

and

Li = (ni − ni−1)(ni − ni−1 − 1) · · · (ni − ni−1 −Ri + 1).

Next, define the numbers K and M by

K =
v∏

i=1

ki and M =
v∏

i=1

Mi,
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and for 1 ≤ i ≤ v, define k′i = K/ki, and M ′
i = M/Mi. Finally, for

1 ≤ i ≤ v, we define

Ni =
(ni − ni−1)k

′
iRM

n0RiLi

.

At last, for any system F, we can define our normalization function

∂(F) by

∂(F) =

[
v∏

i=1

∂i(F, 1, n0)
k′iM

′
i

][
v∏

i=1

∂i(F, ni−1 + 1, ni)
Ni

]
.

We will say that the system F with coefficients in Zp is p-normalized

if ∂(F) 6= 0 and the power of p dividing ∂(F) is less than or equal to

the power of p dividing ∂(G) for any system G with coefficients in Zp

which is equivalent to F.

We now prove a lemma showing that the function ∂ behaves nicely

under the fundamental operations. This is the analogue of Lemma 4

for our normalization function.

Lemma 6. Suppose that F is a system of additive forms.

1) If the system F′ is defined by F′ = F(pw1x1, . . . , p
wsxs), then we have

∂(F′) = pKRMw/n0∂(F),

where w = w1 + · · ·+ ws.
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2) If the system F′′ is defined by

F ′′
j =

∑
n

deg Fn=deg Fj

djnFn,

then we have

∂(F′′) =

(
v∏

i=1

DAi
i

)
∂(F),

where

Di = det([djn]deg Fn=deg Fj=ki
)

and

Ai = Mk′i +
(ni − ni−1)k

′
iRM

n0Ri

.

Proof. For part 1) of the lemma, we have

∂(F′) =

[
v∏

i=1

∂i(F
′, 1, n0)

k′iM
′
i

][
v∏

i=1

∂i(F
′, ni−1 + 1, ni)

Ni

]

=

[
v∏

i=1

(
pBi∂i(F, 1, n0)

)k′iM ′
i

][
v∏

i=1

(
pCi∂i(F, ni−1 + 1, ni)

)Ni

]

where

Bi =
kiRiMi(w1 + · · ·+ wn0)

n0

and

Ci =
kiRiLi(wni−1+1 + · · ·+ wni

)

(ni − ni−1)
.
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Combining the powers of p and simplifying, we find that ∂(F′) =

pA∂(F), where

A =
v∑

i=1

Bik
′
iM

′
i +

v∑
i=1

CiNi

=
v∑

i=1

Ri(w1 + · · ·+ wn0)KM

n0

+
v∑

i=1

(wni−1+1 + · · ·+ wni
)KRM

n0

=
(w1 + · · ·+ wn0)KM

n0

v∑
i=1

Ri +
KRM

n0

v∑
i=1

(wni−1+1 + · · ·+ wni
)

=
KRM

n0

(w1 + w2 + · · ·+ ws) .

To prove part 2) of the lemma, note that we have

∂(F′′) =

[
v∏

i=1

∂i(F
′′, 1, n0)

k′iM
′
i

][
v∏

i=1

∂i(F
′′, ni−1 + 1, ni)

Ni

]

=

[
v∏

i=1

(
DMi

i ∂i(F, 1, n0)
)k′iM ′

i

][
v∏

i=1

(
DLi

i ∂i(F, ni−1 + 1, ni)
)Ni

]

= ∂(F) ·
v∏

i=1

D
Mik

′
iM

′
i+LiNi

i

= ∂(F) ·
v∏

i=1

D
Mk′i+(ni−ni−1)k′iRM/n0Ri

i ,

as desired.�

Now we can prove that p-normalized forms have certain desirable

properties. These properties essentially state that if the forms in F, or

linear combinations of these forms, are reduced modulo p, then many

variables will appear in the reduced forms with a nonzero coefficient.
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While we develop here only a few results along these lines, we note that

it is possible to go further and develop results analogous to Lemmata

2.2 and 2.3 of [12].

Lemma 7. Let the system F of additive forms be p-normalized.

1) Suppose that when this system is reduced modulo p, there are m

variables which have a nonzero coefficient in at least one of the reduced

forms. Then we have

m ≥
v∑

i=1

1

ki

(
n0Ri

R
+ ni − ni−1

)
.

2) Suppose that F is one of the forms in F, having degree kl. If ql

denotes the number of variables which appear with a nonzero coefficient

when F is reduced modulo p, then we have

ql ≥
1

kl

(
n0

R
+

nl − nl−1

Rl

)
.

3) Consider the forms in F of degree kl, and suppose that we make any

H ≤ Rl linear combinations of these forms which are linearly inde-

pendent over Z/pZ. Suppose that when these linear combinations are

reduced modulo p, there are Q = Q(kl, H) variables which appear in at

least one of these reduced forms with a nonzero coefficient. Then we
17



have

Q ≥ H

kl

(
n0

R
+

nl − nl−1

Rl

)
.

Proof. Since part 2 is a special case of part 3 of this lemma, we will

only give explicit proofs of part 1 and part 3. To prove part 1, suppose

that the variables which are explicit modulo p are xi, i ∈ I. Define a

system F′ by F′ = p−1F(y), where

yi =


pxi if i ∈ I

xi if i 6∈ I,

and note that all the coefficients of this system are in Zp. By Lemma

6, we have ∂(F′) = pA∂(F), where

A =
KRMm

n0

−
v∑

i=1

(
RiMk′i +

(ni − ni−1)k
′
iRM

n0

)
.

Now, since the system F is p-normalized, we must have A ≥ 0, whence

we obtain

m ≥ n0

KRM

v∑
i=1

(
RiMk′i +

(ni − ni−1)k
′
iRM

n0

)

=
v∑

i=1

1

ki

(
n0Ri

R
+ ni − ni−1

)
,

as desired.
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In order to prove part 3, we first complete the original H linear

combinations to a set of Rl linear combinations of the forms of degree

kl which are linearly independent over Z/pZ. Let F′ be the system

consisting of these Rl forms and the R−Rl forms in F of degrees other

than kl. Let F ′
j , j ∈ J , be the forms in F′ produced by our original

H linear combinations, and suppose that xi, i ∈ I are the variables

which have a nonzero coefficient when at least one of these H forms

are reduced modulo p. Finally, consider the system F′′ defined by

F ′′
j =


p−1F ′

j(y) if j ∈ J

F ′
j(y) if j 6∈ J ,

where

yi =


pxi if i ∈ I

xi if i 6∈ I.

Note that all of the coefficients in both F′ and F′′ are elements of Zp.

By Lemma 6, we have

∂(F′′) = pMRKQ/n0p−H(Mk′l+(nl−nl−1)k′lRM/n0Rl)∂(F′)

and

∂(F′) = DMk′l+(nl−nl−1)k′lRM/n0Rl∂(F),

where D is the determinant of the matrix corresponding to the linear

combinations taken to produce the Rl forms of degree kl in F′. Hence
19



we may write ∂(F′′) = pADB∂(F), where

A =
MRKQ

n0

−H

(
Mk′l +

(nl − nl−1)k
′
lRM

n0Rl

)

and B is the exponent on D above. Since these combinations are

linearly independent over Z/pZ, we have p 6 | D. Now, since the system

F is p-normalized, we must have A ≥ 0, or in other words

MRKQ

n0

−H

(
Mk′l +

(nl − nl−1)k
′
lRM

n0Rl

)
≥ 0.

Solving this for Q yields

Q ≥ H

kl

(
n0

R
+

nl − nl−1

Rl

)
,

as desired. This completes the proof of the lemma. �

4. Nonsingular Matrices

This section is devoted to the proof of the following lemma, which

shows that we can guarantee that certain matrices are nonsingular

modulo a prime p.

Lemma 8. Suppose that R is a positive integer, that R1, . . . , Rv are

positive integers such that R1+· · ·+Rv = R, that k1, . . . , kv are positive
20



integers with k1 > k2 > · · · > kv, and that p is a prime satisfying

p > k1 − kv + 1. Suppose that A is the matrix

A =


a11x

k1−1
1 · · · a1Rxk1−1

R

...
...

aR1x
kv−1
1 · · · aRRxkv−1

R

 ,

where the exponent on the xi is k1−1 in the first R1 rows, the exponent

is k2 − 1 in the next R2 rows, and so on. Suppose further that for

1 ≤ n ≤ v, the Rn ×Rn submatrix

An = [aij]R1+···+Rn−1+1≤i,j≤R1+···+Rn

is nonsingular modulo p (i.e. det An 6≡ 0 (mod p)). Then there exist

numbers b2, . . . , bR, all nonzero modulo p, such that if we set

x2 = b2x1, . . . , xR = bRx1

and let x1 be any number which is nonzero modulo p, then the matrix

A will be nonsingular modulo p.

To begin the proof, notice that if we make the substitution

xj = bjx1, 2 ≤ j ≤ R,
21



and then pull as many factors of x1 and bj as possible out of the de-

terminant, we obtain

det A = xR1k1+···+Rvkv−R
1 (b2 · · · bR)kv−1 det B,

where B is the matrix

B =


a11 a12b

k1−kv
2 · · · a1Rbk1−kv

R

...
...

...

aR1 aR2 · · · aRR

 .

Therefore it suffices to show that we can choose b2, . . . , bR all nonzero

modulo p such that B is nonsingular modulo p. We prove this by

induction on v, the number of distinct degrees. If v = 1, then the

matrix 
a11 · · · a1R

...
...

aR1 · · · aRR


is nonsingular modulo p by hypothesis, and so it suffices to set b2 =

· · · = bR = 1.

Suppose now that the lemma is true when there are v − 1 distinct

degrees. Set m = R1 + · · ·+ Rv−1, and choose values for b2, . . . , bm, all

nonzero modulo p, which make the upper left-hand m×m submatrix

C of B nonsingular modulo p. Now we just need to show that we can

choose values for bm+1, . . . , bR which work. Since the submatrix C of
22



B is nonsingular modulo p, we can perform elementary row operations

on B to obtain a matrix  C ∗
0p M

 ,

where all the entries of 0p are divisible by p, the asterisk could represent

any matrix, and M has the form

M = [aij − pij(bj)]m+1≤i,j≤R ,

where each pij(bj) is a polynomial of degree at most k1 − kv. Since

C is nonsingular modulo p, it suffices to show that we can choose

bm+1, . . . , bR to make M nonsingular modulo p. Note that if it happens

that each pij(bj) is identically zero, then setting bm+1 = · · · = bR = 1

yields the desired conclusion.

Suppose then that at least one of the pij(bj) is not identically zero.

Then expanding det M yields a polynomial det M = q(bm+1, . . . , bR)

in which degbj
q ≤ k1 − kv for each variable bj. Select a term in this

polynomial with highest total degree d which has a nonzero coefficient

modulo p (if several such terms exist, any one of them can be selected).

Without loss of generality, suppose that the variables involved in this

term are bm+1, bm+2, . . . , br. Set br+1 = · · · = bR = 1. Then det M
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becomes a polynomial of total degree d in bm+1, . . . , br and contains a

term

b
dm+1

m+1 b
dm+2

m+2 · · · bdr
r

whose coefficient is nonzero modulo p, and

dm+1 + · · ·+ dr = d.

Also, for each j, we have dj ≤ k1 − kv. Since p > k1 − kv + 1, we

have p − 1 > dj for each j. Then by Lemma 1, there exist values of

bm+1, . . . , br ∈ {1, 2, . . . , p− 1} such that

q(bm+1, . . . , br, 1, . . . , 1) 6≡ 0 (mod p).

The lemma follows upon noting that the value of each of b1, . . . , bR in

our construction is nonzero modulo p.

5. Proof of Theorem 2

In this section, we will prove Theorem 2 using the tools developed

in Sections 2, 3, and 4. Suppose that F is a system as in (1) defined

over Zp and that p > max{k1 − kv + 1, 2}. Let s0 be the bound on

the number of variables given in Theorem 2. Assume briefly that we

can prove that the theorem is true for systems containing exactly s0

variables. If F contains more than s0 variables, then setting s − s0 of
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them equal to zero yields a new system F′ of diagonal forms in exactly

s0 variables. Since the theorem applies to F′, we know that F′ has

a nontrivial zero, and hence so does F. Thus, in order to prove The-

orem 2, it suffices to prove it for systems containing exactly s0 variables.

Suppose then that F has exactly s0 variables. Note that since our

normalization function ∂ is a polynomial in the coefficients of F, a

standard argument (see for example pages 572-573 of [5]) shows that if

the theorem is true for all systems with ∂(F) 6= 0, then it is true for all

systems with ∂(F) = 0 as well. Hence we may assume that ∂(F) 6= 0.

Additionally, since every system with ∂(F) 6= 0 is equivalent to a p-

normalized system, we may assume without loss of generality that F

is p-normalized. When we normalize, we must specify the values of

n0, n1, . . . , nv used in the normalization procedure. To this end, we set

n0 = R and for 1 ≤ i ≤ v, we define ni by the recursion

ni = ni−1 + tRiki − ki −Ri + t(R1 + · · ·+ Ri−1)Riki + 1,

noting that we have nv = s0.

Let A be the matrix of coefficients of F. We wish to find a collection

of submatrices of A which satisfy the following properties.
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(1) Let t be as defined in the theorem. Then for 1 ≤ j ≤ v, there

are t submatrices of size Rj ×Rj in the collection.

(2) Each submatrix of size Rj ×Rj contains only coefficients of the

forms of degree kj.

(3) Each submatrix in the collection is nonsingular modulo p (i.e.

if B is one of the submatrices, then det B 6≡ 0 (mod p)).

(4) Each column of A contributes elements to at most one subma-

trix in the collection.

To accomplish this, we follow the method used by Brüdern & Godinho

in [4], which adapts the work of Low, Pitman & Wolff in [10]. In the

rest of this section, when we use the term “nonsingular,” we will really

mean “nonsingular modulo p.”

First, we will find t disjoint R1 × R1 nonsingular submatrices of

A. Let A1 be the submatrix of A containing the coefficients of the

forms of degree k1. Then A1 is an R1 × s0 matrix. Let s1,m be the

minimal number of nonzero columns in any m linearly independent

linear combinations of the rows of A1. Then Brüdern & Godinho show

in [4] that A1 contains t disjoint nonsingular R1 × R1 submatrices if

and only if

s1,m ≥ tm for all 0 ≤ m ≤ R1.
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Clearly this condition holds for m = 0. Now, from Lemma 7, we

have

s1,m = Q(k1, m)

≥ m

k1

(
1 +

tk1R1 − k1 −R1 + 1

R1

)
= tm− m

R1

(
1− 1

k1

)
.

Since m
R1

≤ 1 and 1− 1
k1

< 1, we see that s1,m > tm− 1, and since s1,m

is an integer we have s1,m ≥ tm as desired. So we can form t disjoint

nonsingular submatrices of A1 (and hence also of A) of size R1 ×R1.

These submatrices involve a total of tR1 columns of A. When we

find our submatrices corresponding to the degree k2 forms, we do not

want these columns involved. Hence we let A2 be the submatrix of

coefficients of the degree k2 forms, excluding the coefficients from any

columns of A which were involved in our previous nonsingular subma-

trices. Then A2 has R2 rows and s0 − tR1 columns. Again, we find

from [4] that if s2,m is the minimal number of nonzero columns in any

m linearly independent linear combinations of the rows of A2, then the

submatrices we want exist provided that

s2,m ≥ tm for all 0 ≤ m ≤ R2.
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Again, this is clearly true if m = 0. From the normalization process,

we know that any m linearly independent linear combinations of the

forms of degree k2 are explicit in at least

Q(k2, m) ≥ m

k2

(
n0

R
+

n2 − n1

R2

)

variables. However, up to tR1 of these variables might not contribute

to the columns of A2. Hence, we know that the number of nonzero

columns in any m linearly independent linear combinations of the rows

of A2 is at least

s2,m ≥ m

k2

(
1 +

tR2k2 − k2 −R2 + tR1R2k2 + 1

R2

)
− tR1

= tm + (m− 1)tR1 −
m

R2

(
1− 1

k2

)

whenever m ≥ 1. Again, we can see that this bound is strictly larger

than tm − 1, and since s2,m is an integer, we obtain s2,m ≥ tm when

m ≥ 1. Hence we have the bound that we need, and can get the re-

quired R2 ×R2 nonsingular submatrices of A.

We can now proceed inductively to show that we can find all of the

necessary nonsingular submatrices. Assume that we can find the sub-

matrices associated with the forms of degrees k1, k2, . . . , kl−1. These

submatrices involve t(R1 + · · · + Rl−1) columns of A which must not
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contribute to the submatrices for the forms of degree kl. Let Al be

the matrix containing the coefficients of the forms of degree kl, but

excluding any coefficients coming from a column of A which was in-

volved in any of the submatrices we have found previously. Let sl,m be

the minimal number of nonzero columns in any m linearly independent

linear combinations of the rows of Al. As before, we can find t disjoint

nonsingular Rl ×Rl submatrices of Al if and only if we have

(3) sl,m ≥ tm for all 0 ≤ m ≤ Rl.

Once again, this is trivially true for m = 0. If m ≥ 1, then we have

sl,m ≥ Q(kl, m)− t(R1 + R2 + · · ·+ Rl−1)

≥ m

kl

(
1 +

tRlkl − kl −Rl + t(R1 + · · ·+ Rl−1)Rlkl + 1

Rl

)
− t(R1 + · · ·+ Rl−1)

= mt + (m− 1)t(R1 + · · ·+ Rl−1)−
m

Rl

(
1− 1

kl

)
> mt− 1.

Again, since sl,m is an integer, this implies that the inequality in (3)

holds for 1 ≤ m ≤ Rl. Hence this inequality holds for all the neces-

sary values of m, and so the matrices we are looking for do indeed exist.
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Next, by relabeling the variables if necessary, we may assume that

the t(R1 + · · · + Rv) = tR columns of A involved in our nonsingular

submatrices are the columns corresponding to the first tR variables. We

may also assume that the coefficients of x1, . . . , xR correspond (in order)

first to the columns of one of the R1×R1 nonsingular submatrices, then

the columns of one of the nonsingular R2×R2 submatrices, and so on,

ending with the columns of one of the Rv×Rv nonsingular submatrices.

Further, we may assume that this is true for each set of R variables

xjR+1, . . . , x(j+1)R, (0 ≤ j ≤ t− 1).

Now, for each degree kj, define the numbers τj and k̃j as in the

statement of Theorem 2. Consider the system

(4)

a11x
k1
1 + · · ·+ a1sx

k1
s ≡ 0 (mod pτ1+1)

...
...

...

aR1x
kv
1 + · · ·+ aRsx

kv
s ≡ 0 (mod pτv+1).

Note that we have arranged the variables so that the coefficients of

each set of R variables

xjR+1, . . . , x(j+1)R, (0 ≤ j ≤ t− 1)
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satisfy the nonsingularity hypothesis of Lemma 8. Thus for each j we

can find numbers

bjR+2, . . . , b(j+1)R,

all nonzero modulo p, such that if we set

xjR+2 = bjR+2xjR+1, . . . , x(j+1)R = b(j+1)RxjR+1,

then the matrix
a1,jR+1x

k1−1
jR+1 · · · a1,(j+1)Rxk1−1

(j+1)R

...
...

aR,jR+1x
kv−1
jR+1 · · · aR,(j+1)Rxkv−1

(j+1)R


is nonsingular modulo p whenever xjR+1 6≡ 0 (mod p). If we make

these identifications and set xi = 0 whenever i > tR, we obtain a new

system of congruences

(5)

c1,1x
k1
1 + c1,2x

k1
R+1 + · · ·+ c1,tx

k1

(t−1)R+1 ≡ 0 (mod pτ1+1)

...
...

...

cR,1x
kv
1 + cR,2x

kv
R+1 + · · ·+ cR,tx

kv

(t−1)R+1 ≡ 0 (mod pτv+1).

Note that any nontrivial solution of (5) yields a nontrivial solution of

(4). In fact, because of the way we chose the multipliers bj, this solu-

tion of (4) will be nonsingular modulo p.
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We wish to solve (5) with all the variables lying in the Teichmüller

set

Tp = {x ∈ Zp : xp = x}.

Note that if we write k = pτ k̃ with (p, k̃) = 1, then we have

xk = (xpτ

)k̃ = xk̃

whenever x ∈ Tp. Hence any nontrivial solution of the system

(6)

c1,1x
k̃1
1 + c1,2x

k̃1
R+1 + · · ·+ c1,tx

k̃1

(t−1)R+1 ≡ 0 (mod pτ1+1)

...
...

...

cR,1x
k̃v
1 + cR,2x

k̃v
R+1 + · · ·+ cR,tx

k̃v

(t−1)R+1 ≡ 0 (mod pτv+1)

with all variables in Tp will also be a solution of (5).

Now, since we have

t >

v∑
j=1

Rj k̃j
pτj+1 − 1

p− 1
,

Lemma 2 tells us that we can solve the system (6) nontrivially with

each variable in Tp. As noted above, this leads to a solution of (4)

which is nonsingular modulo p. Then Lemma 3 shows that we can lift

this solution of (4) to a solution of (1). Finally, since the solution of

(4) contains at least one variable which is not divisible by p and our

solutions of (1) and (4) are congruent modulo p, the solution of (1) is

a nontrivial solution. This completes the proof of the theorem.
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