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Introduction

In the LaTeX code, this section is labeled ‘‘sec-intro.’’ TODO

In a recent article in the College Mathematics Journal, Prapanpong Pongsriiam [4]
proved a conjecture of Dae Hong [2] about integral values of the generating functions
of the Fibonacci and Lucas numbers. Specifically, for both generating functions, he
found all rational values of x such that the function evaluated at x will be an integer.
In this article, we generalize his methods and prove similar results for a family of
related sequences. Recall that the standard definitions for the Fibonacci sequence Fi

and the Lucas sequence Li are

F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i ≥ 2
L0 = 2, L1 = 1, and Li = Li−1 + Li−2 for i ≥ 2.

For a positive integer a ≥ 3, we define the Fibonacci-like sequence Ga
i by

Ga
0 = a, Ga

1 = 1, and Ga
i = Ga

i−1 +Ga
i−2 for i ≥ 2.

For example, the G3
i -sequence begins

3, 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, . . . .

Note that we can define any of these sequences for negative indices by using the recur-
rence relation. For example, the relation says that we should have G3

1 = G3
0 +G3

−1,
and so we obtain G3

−1 = −2.

For each of these sequences, our goal is to find all of the rational x-values which
make its generating function an integer. We will show how to find all of these x-values
and find several families of solutions which generalize the ones given by Pongsriiam
and Hong. For many values of the parameter a, these are the only solutions, but many
values of a yield other solutions as well. Any additional solutions also come in fami-
lies, and we will see how to find these families, but we do not have a simple formula
which tells us their elements. In particular, we will prove the following theorems.

Theorem 1. Let a ≥ 3 be a positive integer, and define the sequence Ga
i as above. Let

Ga(x) be the generating function for this sequence. Then the values x = Fi/Fi+1 pro-
duce integer values of Ga(x) for all integers i 6= 0, and the values x = −Ga

i+1/G
a
i

produce integer values of Ga(x) for all integers i (including i = 0). Depending on the
value of a, there may be other families of solutions as well. These solutions can be ob-
tained from solutions of the Diophantine equation m2 + 3mc+ c2 − (a2 + a− 1) =
0 with 2 ≤ m ≤ a− 2.
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In the LaTeX code, this theorem is labeled ‘‘thm.’’ TODO

Theorem 2. Suppose that the number a and the sequence Ga
i are defined as in The-

orem 1, and that a ≡ 2 (mod 5). Let Li be the Lucas sequence defined above. Fur-
thermore, write a = 5n+ 2 and define the sequence Hi by

H0 = n, H1 = 3n+ 1, and Hi = Hi−1 +Hi−2 for all i.

Then the values x = Li/Li+1 and x = Hi/Hi+1 produce integer values of Ga(x)
for all integers i.

In the LaTeX code, this theorem is labeled ‘‘thm2.’’ TODO

The remainder of this article is divided into 4 sections. Since it is easy to get bogged
down in the details of the proof, in the next section we will explain the ideas behind
the proof for the specific value a = 4. Then we’ll list the properties of Fibonacci
and Lucas numbers that we’ll need for the proofs of our results. After that, our main
section will give the proofs of the theorems. The short final section contains some
avenues for future work, some of which may be suitable for undergraduate research
projects.

The case a = 4

In the LaTeX code, this section is labeled ‘‘sec-a=4.’’ TODO

In this section, we’ll show how to solve our problem in the specific case when
a = 4. Our goal here is to focus on ideas, not to give the details of our proofs. In a lot
of places, we will simply state results without proving them. We will give complete
proofs of more general statements later.

When a = 4, we are interested in the sequence G4
i with G4

0 = 4, G4
1 = 1, and

G4
i = G4

i−1 +G4
i−2 when i ≥ 2. This sequence begins

4, 1, 5, 6, 11, 17, 28, 45, 73, 118, 191, 309, . . . .

As mentioned in the introduction, we can also use the recurrence relation to define G4
i

for negative values of i, by setting G4
i = G4

i+2 −G4
i+1 when i is negative. This gives

us the values

G4
−1 = −3, G4

−2 = 7, G4
−3 = −10, G4

−4 = 17, G4
−5 = −27, . . . .

The generating function for this sequence is

G4(x) =
−3x+ 4

1− x− x2
.

Following Pongsriiam, suppose that k is an integer and that we want to solve the equa-
tion G4(x) = k. Cross-multiplying and collecting like terms leads to the quadratic
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equation

kx2 + (k − 3)x+ (4− k) = 0, (1)

which has solutions

x =
(3− k)±

√
5k2 − 22k + 9

2k
.

In the LaTeX code, this equation is labeled ‘‘quad-a=4.’’ TODO

We can see that x is rational if and only if 5k2 − 22k + 9 is a perfect square, and so
we need to discover which values of k make this happen. Suppose that m is a positive
number so that 5k2 − 22k + 9 = m2. Then we have 25k2 − 110k + 45 = 5m2, and
completing the square on the left-hand side leads to

(5k − 11)2 = 5m2 + 76.

Let’s study the values of m such that 5m2 + 76 is a perfect square. With a little bit of
work, we can show that this happens if and only if there is an integer n such that

m2 − 3mn+ n2 = 19. (2)

In the LaTeX code, this equation is labeled ‘‘mn-for-a=4.’’ TODO

Hence we need to study the solutions of this new equation (2).
If (m,n) is a solution of (2), then so is (n, 3n −m), and hence we can use the

transformation (m,n) 7→ (n, 3n−m) to produce families of increasing positive val-
ues of m such that 5m2 + 76 is a square. In order to use the transformation to produce
all of the possible values of m, we need to find all of the initial pairs (m,n) for these
families. It turns out that (m,n) is the smallest pair in a family if and only if we have
n = 3m+ c with c > 0. Making this substitution in (2) leads to the equation

m2 + 3mc+ c2 = 19. (3)

Since (3) has all coefficients positive, and both m and c need to be positive integers,
we can solve this equation completely through simple trial and error! The only two
solutions are (m, c) = (1, 3) and (m, c) = (3, 1). These lead to the following families
of solutions of (2):

• 1, 6, 17, 45, 118, 309, 809, 2118, 5545, 14517,. . .

• 3, 10, 27, 71, 186, 487, 1275, 3338, 8739, 22879. . . .

Since we have found all of the solutions of (3), we know that we have all the positive
integer solutions of (2), and hence these values are all the positive integers m such that
5m2 + 76 is a perfect square. In either sequence, if we label the terms as M0,M1, . . .,
we can see that the terms satisfy the recurrence relation

Mi = 3Mi−1 −Mi−2. (4)
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In the LaTeX code, this equation is labeled
‘‘recurrence-a=4.’’

TODO

When we prove our theorems in general, we will show that there is always a family
of solutions starting with 1 and another family of solutions starting with a− 1. While
these are the only families for a = 4, there may be more families for other values of a.
However, no matter how many families there are, the members of each family satisfy
this same recurrence relation.

These families give all the solutions to the equation (2), but unfortunately not every
solution of (2) yields a rational value of x for our equation G(x) = k. This is because,
writing Si =

√
5M2

i + 76, we need to have either 5k − 11 = Si or 5k − 11 = −Si,
and 11 ± Si might not be a multiple of 5. Defining K+

i = (11 + Si)/5 and K−
i =

(11 − Si)/5, we seek the subscripts i such that K+
i and K−

i are integers. For each
family, we can make a table of the values of i, Mi, K+

i , and K−
i to gain some intu-

ition. These tables are found below. We can see that if M0 = 1, then K+
i is an integer

exactly when i is even and K−
i is an integer exactly when i is odd. If M0 = 3 then

K+
i is an integer exactly when i is odd, and K−

i is an integer exactly when i is even.
We will show later that this pattern continues for all i.

i Mi Si =
√
5M2

i + 76 K+
i K−

i

0 1 9 4 0.4
1 6 16 5.4 −1
2 17 39 10 −5.6
3 45 101 22.4 −18
4 118 264 55 −50.6
5 309 691 140.4 −136
6 809 1809 364 −359.6
7 2118 4736 949.4 −945
8 5545 12399 2482 −2477.6
9 14517 32461 6494.4 −6490

TABLE 1: Values of K+
i and K−

i in the M0 = 1 family

We note in passing that in each table, the values of Si =
√
5M2

i + 76 are given by
the formula Si = F2iS1 − F2i−2S0 and satisfy the recursion Si = 3Si−1 − Si−2. We
don’t need this fact here, but it will be important later when we prove which values of
K+

i and K−
i are integral. As another aside, when we prove our theorems we will see

that if a ≡ 2 (mod 5), then both K+
i and K−

i are integers for all i. This explains the
additional families of solutions for these values of a in Theorem 2.

Now that we have found all the values of Mi and k which lead to rational values of
x, we need to actually find these x-values. For each i, define Ki (with no superscript)
to be either K+

i or K−
i , whichever is an integer. Then the numbers Ki are exactly

the values of k for which the equation G4(x) = k has rational solutions, and these
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i Mi Si =
√
5M2

i + 76 K+
i K−

i

0 3 11 4.4 0
1 10 24 7 −2.6
2 27 61 14.4 −10
3 71 159 34 −29.6
4 186 416 85.4 −81
5 487 1089 220 −215.6
6 1275 2851 572.4 −568
7 3338 7464 1495 −1490.6
8 8739 19541 3910.4 −3906
9 22879 51159 10234 −10229.6

TABLE 2: Values of K+
i and K−

i in the M0 = 3 family

solutions are given by

x =
3−Ki ±Mi

2Ki

.

We can calculate the values of x that this formula yields, and these values are in the
tables below.

i Mi Ki x using +Mi x using −Mi

0 1 4 0/1 -1/4
1 6 -1 -5/1 1/1
2 17 10 1/2 -6/5
3 45 -18 -11/6 2/3
4 118 55 3/5 -17/11
5 309 -136 -28/17 5/8
6 809 364 8/13 -45/28
7 2118 -945 -73/45 13/21
8 5545 2482 21/34 -118/73
9 14517 -6490 -191/118 34/55

TABLE 3: Values of x in the M0 = 1 family

Note that when k = Ki = 0, our method gives undefined values for x. This is
expected, since the quadratic formula assumes that the x2 term has a nonzero coef-
ficient, which is not the case here. However, it is easy to see that the only solution
of G4(x) = 0 is x = 4/3. We can now guess formulas for the values of x. When
M0 = 1, each row has a column in which the value is Fi/Fi+1. When M0 = 3, each
row except i = 0 has a column in which the value is−Fi+1/Fi. However, by the iden-
tity (6) in the next section, we have−Fi+1/Fi = F−(i+1)/F−i. Together, these values
yield Fi/Fi+1 for all integers i except i = 0. Similarly, the other values in the table are
−G4

i+1/G
4
i for all i 6= −1, while−G4

0/G
4
−1 = 4/3 is the value above corresponding

to k = 0. These are exactly the x-values claimed in Theorem 1.
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i Mi Ki x using +Mi x using −Mi

0 3 0
1 10 7 3/7 -1/1
2 27 -10 -2/1 7/10
3 71 34 10/17 -3/2
4 186 -81 -5/3 17/27
5 487 220 27/44 -8/5
6 1275 -568 -13/8 44/71
7 3338 1495 71/115 -21/13
8 8739 -3906 -34/21 115/186
9 22879 10234 186/301 -55/34

TABLE 4: Values of x in the M0 = 3 family

Preliminaries for the proof

In the LaTeX code, this section is labeled ‘‘sec-prelim.’’ TODO

In this section, we’ll give the identities for Fibonacci and Lucas numbers that we’ll
need to prove our theorems. All the results that we’ll need for the proof, except appar-
ently (13) and (14), either can be found (perhaps in a slightly different form) in the
excellent reference [3], or else can be trivially derived from identities found in [3]. The
identity (14) follows immediately from the identity (13), which can be easily proved
by induction on n.

Let Fi and Li be the Fibonacci and Lucas sequences defined in the introduction,
and for a fixed integer a ≥ 3, define the sequence Ga

i by

Ga
0 = a, Ga

1 = 1, and Ga
i = Ga

i−1 +Ga
i−2 for i ≥ 2.

We have the identity

Ga
n = Fn−1a+ Fn. (5)

As mentioned in the introduction, we can extend any of these sequences to negative
indices by using the recurrence relation. We have the identities

F−n = (−1)n+1Fn (6)

L−n = (−1)nLn (7)

Ga
−n = (−1)n(Fn+1a− Fn). (8)

For convenience, we’ll almost always drop the superscript a from our notation, as
there will be no chance of this causing confusion.

During our proof, we’ll need the following identities for the Fibonacci and Lucas
numbers:

F 2
n + (−1)n = Fn−1Fn+1 (9)

F 2
n + 1 = F 2

n+1 − Fn+1Fn, n even (10)

F 2
n − 1 = FnFn−1 + F 2

n−1, n odd (11)
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F2n+2 = 3F2n − F2n−2 (12)

F 2
n + F 2

n−2 − (−1)n = 3FnFn−2 (13)

F 2
2n + F 2

2n−2 − 1 = 3F2nF2n−2 (14)

F2n = FnLn (15)

Ln = Fn+1 + Fn−1 (16)

Ln = Fn + 2Fn−1 (17)

Ln−1 = 2Fn − Fn−1 (18)

Ln+1 = 3Fn + Fn−1 (19)

F2n+1 = F 2
n+1 + F 2

n . (20)

The reader may be interested in the article [1], which develops an identity analo-
gous to (14) involving odd subscripted Fibonacci numbers and shows some extremely
interesting applications of it.

The proof in general

In the LaTeX code, this section is labeled ‘‘sec-general.’’ TODO

In this section, we will give the proofs of Theorems 1 and 2. We will use the same
method as when we found the solutions when a = 4, but we will give complete proofs
here.

First steps We begin by deriving the formula for the generating function for G(x).
(As noted above, we will drop the superscript from our notation unless it is needed to
ensure clarity.)

Lemma 3. The generating function for the sequence Gi is given by the formula

G(x) =
(1− a)x+ a

1− x− x2
. (21)

In the LaTeX code, this equation is labeled ‘‘genfn.’’ TODO

Proof. The generating function for our sequence, written in power series form, is

G(x) = G0 +G1x+G2x
2 +G3x

3 +G4x
4 + · · · .

From this, we immediately have

xG(x) = G0x+G1x
2 +G2x

3 +G3x
4 + · · ·

and

x2G(x) = G0x
2 +G1x

3 +G2x
4 + · · · .
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We can then see that

G(x)− xG(x)− x2G(x)

= G0 + (G1 −G0)x+ (G2 −G1 −G0)x
2 + (G3 −G2 −G1)x

3 + · · ·
= a+ (1− a)x.

Note that the recursion relation for the sequence ensures that all of the coefficients of
the x2 and higher degree terms are zero. The formula for G(x) now follows by simple
algebra.

Now suppose that k is an integer and that we wish to solve the equation G(x) = k.
This is equivalent to solving the quadratic equation

kx2 + (1− a+ k)x+ (a− k) = 0. (22)

In the LaTeX code, this equation is labeled ‘‘quad.’’ TODO

When k = 0, this equation has the unique solution x = −a/(1 − a) = −G0/G−1.
When k 6= 0, the solutions to (22) are given by

x =
−(1− a+ k)±

√
5k2 + (2− 6a)k + (1− a)2

2k
. (23)

In the LaTeX code, this equation is labeled ‘‘sln.’’ TODO

Clearly, x will be rational if and only if 5k2 + (2 − 6a)k + (1 − a)2 is a perfect
square. Suppose that m is a positive integer∗ such that

5k2 + (2− 6a)k + (1− a)2 = m2.

After multiplying the above equation by 5 and completing the square on the left-hand
side, we obtain

(5k + (1− 3a))2 = 5m2 − 5(1− a)2 − (1− 3a)2,

i.e.,

(5k + (1− 3a))2 = 5m2 + 4(a2 + a− 1). (24)

In the LaTeX code, this equation is labeled ‘‘5m2.’’ TODO

∗Note that m = 0 is impossible. Having m = 0 would imply that a2 + a− 1 is a perfect square, but this
number is strictly between a2 and (a+ 1)2.
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Finding acceptable values of m Let us now see how to find all values of m such
that 5m2 + 4(a2 + a − 1) is a perfect square. For the moment, we will ignore the
question of whether a given value of m leads to an integral value of k.

Lemma 4. Let a be a fixed positive integer. Then 5m2 + 4(a2 + a− 1) is a perfect
square if and only if there is an integer n such that

m2 − 3mn+ n2 − (a2 + a− 1) = 0. (25)

In the LaTeX code, this lemma is labeled ‘‘equivalence.’’ TODO

In the LaTeX code, the above equation is labeled ‘‘mn-eqn.’’ TODO

Proof. Suppose first that such an integer n exists. Considering (25) as a quadratic
equation with n as a variable, we see that

n =
3m±

√
5m2 + 4(a2 + a− 1)

2
. (26)

In the LaTeX code, this equation is labeled ‘‘n.’’ TODO

Since m and n are integers, we see that 5m2 + 4(a2 + a − 1) must be a perfect
square. Conversely, suppose that 5m2 + 4(a2 + a− 1) is a perfect square. We need
to show that the expression for n given in (26) yields an integer. To see this, we have√

5m2 + 4(a2 + a− 1) ≡ 5m2 + 4(a2 + a− 1) ≡ m (mod 2).

It immediately follows that

3m±
√
5m2 + 4(a2 + a− 1) ≡ 3m±m ≡ 0 (mod 2),

and we are finished.

Armed with this equivalence, we now study the solutions of (25). Since the equation
is symmetric in the variables, it suffices to find the solutions with m ≤ n. If m = n,
then the left-hand side of (25) is negative, and hence (m,n) is not a solution. Therefore
we can look for solutions with m < n. As in the a = 4 case, we wish to separate the
solutions into families. We can do this by using the following lemma.

Lemma 5. Suppose that (m,n) is an ordered pair of integers which satisfies (25).
Then both (n, 3n−m) and (3m− n,m) are also ordered pairs of integers satisfying
(25). Moreover, the transformations (m,n) 7→ (n, 3n −m) and (m,n) 7→ (3m −
n,m) are inverses.

In the LaTeX code, this equation is labeled ‘‘family.’’ TODO
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We won’t prove this lemma since the proof just involves simple algebra.

Now, suppose that (m,n) is an integral solution of (25) with m < n. We wish to
use the transformation

(m,n) 7→ (3m− n,m) (27)

In the LaTeX code, this equation is labeled ‘‘trans.’’ TODO

to produce pairs with smaller and smaller (but positive) first coordinates. Once we
reach an ordered pair with the smallest positive first coordinate, applying the transfor-
mation (m,n) 7→ (n, 3n−m) will give us an infinite family of solutions to (25), and
thus a family of m-values with 5m2 + 4(a2 + a− 1) a perfect square.

There are two possible ways in which our repeated use of the transformation (27)
can end. We are finished when either 3m− n < 0, so that the new ordered pair has a
negative coordinate, or when 3m− n > m, so that our new ordered pair has m > n
instead of m < n. However, we can now prove the following lemma.

Lemma 6. The case 3m− n > m cannot occur.

In the LaTeX code, this lemma is labeled ‘‘impossible.’’ TODO

Proof. Suppose that (m,n) is an integral solution of (25) with m < n and 3m− n >
m. Then we have m < n < 2m, and we can write n = m + c, where 0 < c < m.
Plugging this into (25) gives us

m2 − 3mn+ n2 − (a2 + a− 1) = m2 − 3m(m+ c) + (m+ c)2 − (a2 + a− 1)

= c2 −m2 −mc− (a2 + a− 1).

However, we have c2 −m2 < 0 since 0 < c < m, and so our final expression is
strictly negative. Hence (m,n) cannot satisfy (25), a contradiction.

Thus our repeated use of (27) will only end when we reach an ordered pair (m,n)
with 3m− n < 0, i.e., with n > 3m. Suppose that (m,n) is such a pair, and write
n = 3m+ c with c > 0. In this case, the equation (25) becomes

m2 + 3mc+ c2 − (a2 + a− 1) = 0. (28)

In the LaTeX code, this equation is labeled ‘‘mc-eqn.’’ TODO

Therefore, the initial values for each family of solutions to (25) correspond exactly
to the positive integer solutions of (28). In the following lemma, we find two solutions
of (28) which work for any value of a, and also give a best possible bound which shows
us where to search for any possible additional solutions.
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Lemma 7. Two positive integral solutions of (28) are (m, c) = (1, a − 1) and
(m, c) = (a − 1, 1). These are the only solutions with either variable equal to 1 or
a− 1. There are no positive integral solutions with either m ≥ a or c ≥ a.

In the LaTeX code, this lemma is labeled ‘‘mc-slns.’’ TODO

Proof. If m = 1, then (28) becomes c2 + 3c− (a2 + a− 2) = 0, and the left-hand
side factors as (c − (a − 1))(c − (−a − 2)). The solution c = −a − 2 is negative,
and we may discard it. Similarly, if m = a− 1, then (28) becomes c2 + (3a− 3)c+
(2 − 3a) = 0, and the left-hand side factors as (c − 1)(c − (2 − 3a)). Again, the
solution c = 2− 3a may be discarded since it is negative. Since (28) is symmetric in
m and c, the first two statements of the lemma are true. Finally, suppose that m ≥ a.
Since c ≥ 1, we have

m2 + 3mc+ c2 − (a2 + a− 1) ≥ a2 + 3a+ 1− (a2 + a− 1)

= 2a+ 2

> 0,

and so (m, c) cannot be a solution of (28). Symmetry again shows that there are no
solutions with c ≥ a.

The solution (m, c) = (1, a− 1) of (28) leads to the solution (m,n) = (1, a+ 2)
of (25), and therefore also to a family of m-values such that 5m2 + 4(a2 + a− 1) is a
perfect square. Similarly, the solution (m, c) = (a− 1, 1) of (28) leads to the solution
(m,n) = (a− 1, 3a− 2) of (25), and to a second family of m-values. To find other
families of solutions, we can try each possible value of m with 2 ≤ m ≤ a− 2 and
see whether it leads to a positive integral value of c.

Computationally, it seems difficult to tell, given the value of a, whether there will
be more solutions than just the two “standard” families. For 0 ≤ a ≤ 100, there are
36 values with “extra” families, the smallest one being a = 14. For 101 ≤ a ≤ 200,
there are 51 values of a which have extra families of solutions. The values of a with
3 ≤ a ≤ 100 which have no extra families are given in the table below. For these val-
ues of a, we will see that the x-values given in Theorems 1 and 2 are the only rational
x such that Ga(x) is an integer. Among the values which do have extra solutions,
it seems most common for there to be exactly two additional families, although it is
possible to have more. Up to a = 202, the value a = 42 is the only one which has
only one extra family. (This arises when (28) has a single extra solution with m = c.)

Properties of the Mi sequences Our ultimate goal is to show that the m-values in
our standard families lead to the values of x in the statements of the theorems. In order
to do this, we need some information about the behavior of these families. Although
we are only interested in the standard families, the lemmas in this section apply to any
family of solutions of (25).

Let us refer to any family of m-values that can be found using the methods above
as Mi, i ≥ 0. (As with our lack of superscripts, this abuse of notation will not cause
any confusion.) Our first standard family has

M0 = 1 and M1 = a+ 2
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3 11 21 32 46 59 72 89
4 12 22 35 48 60 76 93
5 13 24 37 50 64 77 94
6 15 26 38 53 65 82 96
7 16 27 39 54 66 83 97
8 17 28 41 55 67 85 100
9 19 30 44 56 68 86
10 20 31 45 57 70 87

TABLE 5: Values with 3 ≤ a ≤ 100 and no extra solutions

and the second standard family has

M0 = a− 1 and M1 = 3a− 2.

Any of our families (standard or otherwise) satisfies the recurrence relation

Mi = 3Mi−1 −Mi−2,

as can be seen from the transformation (m,n) 7→ (n, 3n −m) used to produce the
family. Using this recurrence relation, we can find a formula for the elements of each
family. An easy induction argument using (12) allows us to prove the following lemma.
We will omit the details of the proof.

Lemma 8. For each family Mi, we have

Mi = F2iM1 − F2i−2M0 for i ≥ 0,

where Fi is the Fibonacci sequence. If our family comes from the solution (M0, c) of
(28), then we also have

Mi = F2i+2M0 + F2ic for i ≥ 0.

In the LaTeX code, this lemma is labeled ‘‘M-values.’’ TODO

In order to calculate the values of k associated with a family Mi, we will need in-
formation about the numbers Si =

√
5M2

i + 4(a2 + a− 1). Here we abuse notation
in the same way as with Mi, allowing Si to refer to any family of Mi-values as needed.
We show that the numbers Si have essentially the same form as the Mi.

Lemma 9. Let Mi be a family of positive solutions of (25), as defined above. If we
define Si =

√
5M2

i + 4(a2 + a− 1), then we have

Si = F2iS1 − F2i−2S0 for i ≥ 0. (29)

In the LaTeX code, this equation is labeled ‘‘S-recursion.’’ TODO

Also, the Si satisfy the recursion

Si = 3Si−1 − Si−2. (30)
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In the LaTeX code, this equation is labeled ‘‘S-rec-2.’’ TODO

In the LaTeX code, this lemma is labeled ‘‘S-formula.’’ TODO

Proof. Since M1 > M0 in any family, we must have S1 > S0, and hence the formula
(29) produces only positive values of Si. Therefore it suffices to show that (29) implies
that S2

i = 5M2
i + 4(a2 + a− 1). We need to show that

(F2iS1 − F2i−2S0)
2 = 5(F2i+2M0 + F2ic)

2 + 4(a2 + a− 1).

Bringing all of the terms to the left, we need to show that the expression

(F2iS1 − F2i−2S0)
2 − 5(F2i+2M0 + F2ic)

2 − 4(a2 + a− 1) (31)

In the LaTeX code, this equation is labeled ‘‘exp.’’ TODO

is equal to zero. If we expand the squared expressions and use identities (12) and (14),
along with the identities

S2
0 = 5M2

0 + 4(a2 + a− 1)

S2
1 = 5(3M0 + c)2 + 4(a2 + a− 1),

then (31) reduces to

2F2iF2i−2

(
15M2

0 + 5M0c+ 6(a2 + a− 1)− S0S1

)
. (32)

In the LaTeX code, this equation is labeled ‘‘exp2.’’ TODO

In order to show that the expression (32) equals zero, it suffices to show that

S0S1 = 15M2
0 + 5M0c+ 6(a2 + a− 1).

Since both sides of this are positive, it suffices to prove that

S2
0S

2
1 = (15M2

0 + 5M0c+ 6(a2 + a− 1))2.

However, this can easily be seen by substituting the identities for S2
0 and S2

1 , expanding
both sides, and using (28). The final statement of the lemma now follows by induction,
using (12).

We find it very interesting that the Mi and Si obey the same recurrence!
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Finding the values of k Now that we have an expression for Si, we can find all the
possible values of k such that the equation G(x) = k has a rational solution. Con-
sidering (24), we see that each Mi leads to two possible k-values, which we write
as

K+
i = (3a− 1 + Si)/5 and K−

i = (3a− 1− Si)/5.

We need to determine when the numbers K+
i and K−

i are integers. For this, we
need to determine when we have

3a− 1 ≡ ±Si (mod 5).

We begin with a lemma relating the values of Si for different i.

Lemma 10. If a ≡ 2 (mod 5), then Si ≡ 0 (mod 5) for all i. If a 6≡ 2 (mod 5),
then we have S0 6≡ 0 (mod 5) and Si ≡ (−1)iS0 (mod 5) for all i ≥ 0.

In the LaTeX code, this lemma is labeled ‘‘S-lem.’’ TODO

Proof. In this proof, all congruences should be interpreted modulo 5. We clearly have
S2
i ≡ 4(a2 + a − 1) for all i. If it happens that a ≡ 2, then this equation becomes

S2
i ≡ 0, which implies that Si ≡ 0.

Suppose now that a 6≡ 2. Then S2
i ≡ 4(a2 + a− 1) 6≡ 0, and so we see that Si 6≡ 0

for any i. If i > 0 then we have S2
i − S2

i−1 ≡ 0, which implies that either Si ≡ Si−1

or Si ≡ −Si−1. Suppose first that Si ≡ Si−1. Then by (30) we have

Si+1 = 3Si − Si−1 ≡ 2Si−1.

This implies that

S2
i+1 ≡ 4S2

i−1

≡ 16(a2 + a− 1)

≡ a2 + a− 1.

However, we know that we must have

S2
i+1 ≡ 4(a2 + a− 1) 6≡ a2 + a− 1,

a contradiction. Hence this case cannot occur.

Therefore we must have Si ≡ −Si−1 for all i > 0. This easily leads to having
Si ≡ (−1)iS0 for all i. This completes the proof of the lemma.

From this lemma, we can see that if a ≡ 2 (mod 5), then both K+
i and K−

i are
integers for all i, since we have

3a− 1± Si ≡ 0± 0 ≡ 0 (mod 5).

For a 6≡ 2 (mod 5) and i fixed, we can see that at most one of K+
i and K−

i can be
an integer, since we can have either

3a− 1 ≡ −Si (mod 5) or 3a− 1 ≡ Si (mod 5),
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but not both. Therefore, by Lemma 10, we have two possibilities in this situation.
If any of K+

i or K−
i are integers, then one of them is an integer exactly when i is

odd and the other is an integer exactly when i is even. Otherwise, the possibility still
remains that none of K+

i and K−
i are integers for any values of i.

Calculating the values of x Finally, we need to find the actual values of x which
guarantee that G(x) is an integer when Mi is in one of the standard families. Recall
that we have

x =
−(1− a+ k)±m

2k
,

where we have m = Mi for some i, and k can be either K+
i or K−

i . In the next two
lemmas, we’ll show that when K+

i or K−
i is an integer, these x-values equal the ones

given in the theorems.

Lemma 11. Suppose that Mi is the family starting with M0 = 1. Then K+
i is an

integer when i is even and K−
i is an integer when i is odd. We have

[−(1− a+K+
i ) +Mi]/2K

+
i = Fi/Fi+1, i even

[−(1− a+K+
i )−Mi]/2K

+
i = −Gi+1/Gi, i even

[−(1− a+K−
i ) +Mi]/2K

−
i = −Gi+1/Gi, i odd

[−(1− a+K−
i )−Mi]/2K

−
i = Fi/Fi+1, i odd.

If Mi is the family starting with M0 = a− 1, then K+
i is an integer when i is odd and

K−
i is an integer when i is even. We have

[−(1− a+K+
i ) +Mi]/2K

+
i = −G−i/G−(i+1), i odd

[−(1− a+K+
i )−Mi]/2K

+
i = −Fi+1/Fi, i odd

[−(1− a+K−
i ) +Mi]/2K

−
i = −Fi+1/Fi, i ≥ 2 even

[−(1− a+K−
i )−Mi]/2K

−
i = −G−i/G−(i+1), i ≥ 2 even.

In the last two lines above, we cannot take i = 0, since K−
0 = 0. However, the value

of x satisfying G(x) = 0 is x = −a/(1− a) = −G0/G−1.

In the LaTeX code, this lemma is labeled ‘‘x-vals.’’ TODO

Proof. Since the proof of each statement involves a lot of messy computations, we’ll
only prove the first of the 8 formulas. The proofs of the other formulas are similar.
Since we are considering the family with M0 = 1 and M1 = a+ 2, we can calculate

S0 =
√
5M2

0 + 4(a2 + a− 1) = 2a+ 1

and

S1 =
√
5M2

1 + 4(a2 + a− 1) = 3a+ 4.
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We can calculate K+
0 = a, and therefore we see that K+

i is an integer when i is even,
as expected. We know then that K−

i is an integer when i is odd.

Using the definition of K+
i and Lemmas 8 and 9, we can see that

−(1− a+K+
i ) +Mi

2K+
i

=
−4 + 2a− Si + 5Mi

2Si − 2 + 6a

=
[2 + 2F2i + 2F2i−2]a+ [−4 + 6F2i − 4F2i−2]

[6F2i − 4F2i−2 + 6]a+ [8F2i − 2F2i−2 − 2]
.

In order to show that this expression equals Fi/Fi+1 when i is even, we will show that

Fi+1 · ([2 + 2F2i + 2F2i−2]a+ [−4 + 6F2i − 4F2i−2])

= Fi · ([6F2i − 4F2i−2 + 6]a+ [8F2i − 2F2i−2 − 2])

for even values of i. To do this, we will show that the coefficients of a on each side are
equal and that the terms not multiplied by a are equal.

For the a-terms, we need to show that

2Fi+1 + 2F2iFi+1 + 2F2i−2Fi+1 = 6F2iFi − 4F2i−2Fi + 6Fi.

That is, we need to show that the expression

2Fi+1 + 2F2iFi+1 + 2F2i−2Fi+1 − 6F2iFi + 4F2i−2Fi − 6Fi (33)

In the LaTeX code, this equation is labeled ‘‘a-exp.’’ TODO

is equal to zero when i is even. If we use the recurrence relation along with identities
(15), (17), and (18) to write (33) in terms of only Fi and Fi−1, we get

− 4F 3
i − 4Fi − 2F 3

i−1 + 2Fi−1 + 6F 2
i Fi−1 + 2FiF

2
i−1. (34)

In the LaTeX code, this equation is labeled ‘‘a-exp2.’’ TODO

However, since i is even, we have, using (10)

−4F 3
i − 4Fi = −4Fi(F

2
i + 1)

= −4Fi(F
2
i+1 − Fi+1Fi)

= −4Fi(FiFi−1 + F 2
i−1).

Similarly, using (11), we have

−2F 3
i−1 + 2Fi−1 = −2Fi−1(F

2
i−1 + 1)

= −2Fi−1(Fi−1Fi−2 + F 2
i−2)

= −2Fi−1(F
2
i − FiFi−1).
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If we substitute these identities into the expression (34), we see that this expression
really does equal zero.

To treat the terms not multiplied by a, we need to show that if i is even, then we
have

Fi+1(−4 + 6F2i − 4F2i−2) = Fi(8F2i − 2F2i−2 − 2).

That is, we need to show that the expression

− 4Fi+1 + 6F2iFi+1 − 4F2i−2Fi+1 − 8F2iFi + 2F2i−2Fi + 2Fi (35)

is equal to zero when i is even. Again, we rewrite (35) in terms of Fi and Fi−1, ob-
taining

− 2Fi − 2F 3
i − 4Fi−1 + 4F 3

i−1 − 2F 2
i Fi−1 + 6FiF

2
i−1. (36)

As with the a-terms, we can rewrite

−2Fi − 2F 3
i = −2Fi(FiFi−1 + F 2

i−1)

and

−4Fi−1 + 4F 3
i−1 = 4Fi−1(F

2
i − FiFi−1).

Substituting these identities into (36), we see that this expression really is equal to
zero for even values of i. This completes the proof of the first formula in the statement
of the lemma.

As noted above, the proofs of the other formulas are all similar to this one. For the
formulas involving quotients of Gi-terms, we make use of (5) and (8). When we use
these formulas, the numerator and denominator of the resulting fractions each have
an a2-term in addition to the a and “constant” terms. In this case, we use the same
ideas as above to prove that the coefficients of a2 in the numerator and denominator
are equal, as well as the a-coefficients and the constant terms.

To finish the proof of the lemma, we have to deal with the final case when K+
i = 0

or K−
i = 0. We can see that K+

i = 0 exactly when Si = 1− 3a, which never occurs
since Si is defined to be positive. We have K−

i = 0 exactly when Si = 3a− 1, which
is the value of S0 in the family starting with M0 = a− 1. However, when k = 0, it
is easy to see from the formula (21) for G(x) that the only solution of G(x) = 0 is
x = −a/(1− a), and that this is equal to −G0/G−1.

To complete the proof of Theorem 1, we have by (6) that

−Fi+1/Fi = F−(i+1)/F−i = Fn/Fn+1,

where we have set n = −(i+ 1). Hence the four x-values involving Fibonacci num-
bers combine to give Fi/Fi+1 for all i 6= 0. Similarly, the other four values in the
lemma combine to give −Gi+1/Gi for all i 6= −1. But the value with i = −1 is the
value corresponding to k = 0. Hence the numbers x = −Gi+1/Gi produce integer
values of G(x) for all integers i. This completes the proof of Theorem 1.

To complete the proof of Theorem 2, we must deal with the remaining values of
K+

i and K−
i , which we have shown are integers when a ≡ 2 (mod 5).
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Lemma 12. Suppose that a ≡ 2 (mod 5). If Mi is the family starting with M0 = 1,
then we have

[−(1− a+K+
i ) +Mi]/2K

+
i = Li/Li+1, i odd

[−(1− a+K+
i )−Mi]/2K

+
i = H−(i+1)/H−i, i odd

[−(1− a+K−
i ) +Mi]/2K

−
i = H−(i+1)/H−i, i even

[−(1− a+K−
i )−Mi]/2K

−
i = Li/Li+1, i even,

where the numbers Li are elements of the Lucas sequence and Hi is the sequence
defined in the statement of Theorem 2. If Mi is the family starting with M0 = a− 1,
then we have

[−(1− a+K+
i ) +Mi]/2K

+
i = Hi/Hi+1, i even

[−(1− a+K+
i )−Mi]/2K

+
i = L−(i+1)/L−i, i even

[−(1− a+K−
i ) +Mi]/2K

−
i = L−(i+1)/L−i, i odd

[−(1− a+K−
i )−Mi]/2K

−
i = Hi/Hi+1, i odd.

In the LaTeX code, this lemma is labeled ‘‘2mod5.’’ TODO

The proof of this lemma involves the same kinds of computations as in the proof of
Lemma 11, and so we won’t give the details here. We do note that we need not worry
about having K−

0 = 0 since this only occurs in the family starting with M0 = a− 1,
not the family starting with M0 = 1. We can now see, using the identity (7), that the
four values involving Lucas numbers combine to give Li/Li+1 for all ingeters i, and
the other four values combine to give Hi/Hi+1 for all integers i. This completes the
proof of Theorem 2.

Avenues for future research

In the LaTeX code, this section is labeled ‘‘sec-future.’’ TODO

In this final section, we briefly list some possible directions for future study, which
may be suitable for undergraduate research projects.

1. Can more be said about the solutions of (28)? We suspect that it should be pos-
sible to prove that there are infinitely many values of a such that there are more
solutions with 1 ≤ m ≤ a − 1 than just m = 1 and m = a − 1. Are there also
infinitely many values of a such that m = 1 and m = a− 1 are the only solutions?
What if we ask the same questions, but study the cases a ≡ 2 (mod 5) and a 6≡ 2
(mod 5) separately?

2. With regard to the “extra” families of solutions, is it possible to have solutions of
(28) which do not lead to integer values of K+

i or K−
i for any i? Or do these extra

families of solutions always lead to new rational values of x which make G(x) an
integer? For a ≤ 104, any extra solutions do lead to new rational values of x.
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3. For all of the families of solutions of G(x) = k we have studied, the x-values
are quotients of successive terms of a sequence satisfying the recurrence relation
An = An−1 + An−2. Is this still true for solutions which come from the extra
families?

4. What can be said if we replace Ga
i by a different sequence?
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