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Diagonal forms over quadratic extensions of Q2

By Bruno de Paula Miranda, Hemar Godinho and Michael P. Knapp

Abstract. In 1920, Emil Artin conjectured: Let K be a field complete with respect

to a discrete absolute value, with finite residue field. Then every homogeneous form with

coefficients in K and degree d with at least d2 +1 variables admits a non-trivial zero. In

this article we prove the conjecture for diagonal forms of degree d not power of 2 over

any quadratic extension of Q2.

1. Introduction

Let K be a field complete with respect to a discrete absolute value and with

finite residue field. We denote by OK the set of the integers of K. Consider a

diagonal form

F = a1x
d
1 + · · ·+ aNx

d
N (1)

of degree d in N variables and with coefficients in K. We define Γ∗(d,K) as the

least positive integer such that, whenever N ≥ Γ∗(d,K), then there exists a non-

trivial zero for F . In 1920, the Austrian mathematician Emil Artin conjectured:

Conjecture. Let K be a field complete with respect to a discrete absolute

value and with finite residue field. If F is a homogeneous form of degree d in

N variables and coefficients in K, then N ≥ d2 + 1 guarantees the existence of a

non-trivial zero for F .

Lang [5] proved that the conjecture is true when K is a field of power series

over a finite field. However, in 1966, Terjanian [9] found a homogeneous form of

degree 4 in 18 variables and coefficients in Q2 with no non-trivial zeros.
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However, no counterexample has yet been found if we look only for diagonal

forms. Furthermore, in 1963, Davenport and Lewis [3] proved the following ver-

sion of the conjecture. For every d ∈ N we have Γ∗(d,Qp) ≤ d2 + 1. Moreover, if

d+ 1 = p, then Γ∗(d,Qp) = d2 + 1. Since then, a lot of research has been done in

order to generalize this result to finite extensions of Qp. In 2008, Brink, Godinho

and Rodrigues [2] proved that if K is a finite extension of Qp of degree n and

d = pl ·m with (m, p) = 1, then

Γ∗(d,K) ≤ d2l+5 + 1

and

Γ∗(d,K) ≤ 4nd2 + 1.

The second estimate above gives one hope to prove Artin’s conjecture for diag-

onal forms over finite extensions of Qp. In recent years, there have been several

significant results on this problem. In 2017, Moore [6] showed that

Γ∗(d,K) ≤

{
d(md+ 1)l+1 p > 2

d(md+ 1)l+2 p = 2,

and recently Skinner [7] has improved this to

Γ∗(d,K) ≤

md
(

pl+1−1
p−2

)
p > 2

2md(pl+2 − 1) p = 2.

We note that the results of Moore and Skinner just quoted are both specializations

of results which apply to systems of diagonal forms. Additionally, Vieira proved

in his Ph.D. thesis [8] that if p > 2 and the extension K/Qp is unramified, then

Γ∗(d,K) ≤ d2 + 1,

and Knapp [4] has shown that if K is any ramified quadratic extension of Q2,

then Γ∗(6,K) ≤ 9. In this article we prove the following result:

Theorem 1. Let K be any quadratic extension of Q2. For d not a power of

2 we have Γ∗(d,K) ≤ d2 + 1.

In the proof of Theorem 1, we will take a diagonal form F of degree d in

N = d2 + 1 variables, with coefficients in OK (this can be assumed since K is

the field of fractions of OK), and find non-singular solutions for F modulo a
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specific power of π (the uniformizer of K). Then we can, by means of a version

of Hensel’s Lemma, lift these solutions to non-trivial solutions of F = 0. To

find these non-singular solutions, we will use the method of contractions, which,

roughly speaking, involves solving congruences one power of π at a time until we

can achieve a solution modulo a specific power of π. To better work with the

aforementioned contractions we will make use of the fact that every element of

OK can be written as a power series in π and then obtain some combinatorial

results.

Once we have developed these preliminary results, there are unfortunately

numerous cases that must be considered. However, in all of these cases, we use the

same ideas in the proof. Our goal in each case is to use contractions to produce a

“primary” variable at a sufficiently high “level” of F (these terms are defined in

Section 2). We begin by creating as many primary variables as possible by making

contractions of variables at “level 0.” If K is the unramified extension of Q2, then

we find ourselves in one of two situations. If sufficiently many of these primary

variables are at a high enough level, then our goal is to use these primaries in

our final contractions. In order to do this, we need some additional variables at

these high levels, and we show that that we are able to make contractions of the

“secondary” (i.e., non-primary) variables to obtain these. On the other hand, if

our initial contractions do not yield enough primary variables at high levels, then

we are able to make a change of variables such that the form F ′ produced by this

change has more variables at low levels than F does. We then begin the problem

anew, using F ′ instead of F . After at most two iterations of this process, we are

able to produce the primary variables at high levels that we need to finish the

proof.

If the extension K is ramified, it turns out that using the initial form F ,

we are always able to get primary variables at high enough levels, so that we do

not need to make changes of variables as above. However, there is a different

issue which arises for these extensions. In the step where secondary variables are

contracted, the contractions lift variables by 2 levels at a time, and therefore we

may not be able to create secondary variables at exactly the same levels as the

primary variables. If this is the case, then instead of using the variables at level

0 to create the primaries, we will use the variables at level 1. We can then show

that with this new type of primary variable, we are able to create primaries at

the same high level as the secondaries, allowing us to complete the proof.

To finish this introduction, it is appropriate to comment briefly on the quality

of these results. As mentioned above, the bound Γ∗(d,K) ≤ d2 + 1 is sharp when

K = Qp. Philosophically, the problem should be at least as difficult for extension
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fields as it is for Qp, since one needs to find nonsingular solutions modulo higher

powers of π in order to use Hensel’s Lemma. Therefore one suspects that d2 + 1

is the best upper bound that can be hoped for in these cases. However, we do not

know of any specific example of an extension field K and a form of degree d in

d2 variables that has no nontrivial zeros over K. We also note that our theorem

does not include the case where d is a power of 2, although we conjecture that

the d2 + 1 bound holds for these degrees as well. For these degrees, we find that

the number of variables at level 0 is insufficient for our contractions to produce

primary variables at high enough levels to use Hensel’s Lemma. It is likely that a

significantly more delicate analysis would be required to prove Artin’s conjecture

for these degrees.

The remainder of this article is divided into 4 sections. In the next section we

present some basic concepts regarding finite extensions of Qp and some techniques

that we will use in the proof of Theorem 1. In sections 3 and 4 we prove a series

of combinatorial lemmas for elements of OK , where K is a quadratic extension

(unramified - section 3, ramified - section 4) of Q2. In section 5 we present the

proof of Theorem 1.

2. Preliminary Concepts

In this section we introduce notation and ideas that will be used throughout

the proof of Theorem 1. We set K as a quadratic extension of Q2 and take π a

uniformizer of K. Then every integer a ∈ OK can be written as

a =
∑
i≥0

ai · πi (2)

where the ai belong to a set R of representatives of the residue field kK = OK/(π).

For the six ramified extensions

Q(
√
±2), Q(

√
±10), Q(

√
−1), and Q(

√
−5)

we have 2 ≡ π2(modπ3) and kK = F2 so we can take R = {0, 1}. For the

unramified extension Q(
√

5) we have 2 = π and kK = F4 so we take R =

{0, 1, α, α+ 1}.
If b ∈ OK is such that

b = πk(b0 + b1π + b2π
2 + · · · ) (3)
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where bi ∈ R for all i ≥ 0 and b0 6= 0, we say that b is an element at level k and

that b0 is the zeroterm of b. Extending this notion, we say that a variable xj of

the form F (see (1)) is at level k and has zeroterm b0 if its coefficient aj does.

Davenport and Lewis [3] defined an equivalence relation on the set of additive

forms that allows us to work with a special type of form. While they worked

with diagonal forms over Qp, their proof can be easily adapted to our case. We

summarize, in our context, their result.

Lemma 2.1 (Normalized Form). Any diagonal form as in (1) with coeffi-

cients in OK is equivalent to a form of type

F0 + πF1 + · · ·+ πd−1Fd−1 (4)

where each Fj is a diagonal form with coefficients in OK in mj variables, and if

xi is a variable in Fj then its coefficient is not divisible by π. Furthermore, we

have

N =

d−1∑
i=0

mi and m0 + · · ·+mj ≥ (j + 1) ·
(
N

d

)
(5)

for j = 0, . . . , d − 2. A form satisfying these properties is said to be normalized,

and if a normalized form has non-trivial zeros in OK , so does any equivalent form.

Now we define the concept of contraction, introduced by Davenport and

Lewis [3]. Consider a form as in (4). Let x1, . . . , xt be variables of this form at

levels less than j. If we can find b1, . . . , bt ∈ OK such that

a1b
d
1 + · · ·+ atb

d
t = πk ·m

with k ≥ j and m 6≡ 0 mod π, then setting xi = biT for all 1 ≤ i ≤ t we obtain

a new variable T at level k having coefficient πk · m. This process is called a

contraction of variables to a new variable at level k. The method of contracting

variables becomes a powerful tool when associated with the following versions of

Hensel’s Lemma (see [2] and [1], respectively).

Lemma 2.2 (Hensel - Unramified Case). Let K be the unramified quadratic

extension of Q2. Suppose F is an additive form with coefficients in OK and degree

d. Let l be defined by d = 2l ·m with odd m. Let x be a variable in F at level j.

Suppose x can be used in a contraction of variables (or in a series of contractions)

which produces a new variable at level k. If

k ≥

{
j + l + 2 for l ≥ 1

j + l + 1 for l = 0

then F admits a non-trivial zero.



6 Bruno de Paula Miranda, Hemar Godinho and Michael P. Knapp

Lemma 2.3 (Hensel - Ramified Case). Let K be any ramified quadratic

extension of Q2. Suppose F is an additive form with coefficients in OK and

degree d. Let l be defined by d = 2l ·m with odd m. Let x be a variable in F

at level j. Suppose x can be used in a contraction of variables (or in a series of

contractions) which produces a new variable at level k ≥ j + 2l + 3. Then F

admits a non-trivial zero.

Definition 1. A variable at level 0, or a variable at a higher level that was

obtained by contractions containing variables at level 0, will be called a primary

variable. Furthermore, a variable is (i)-primary if it is primary and has level i.

The other variables will be called (i)-secondary according to their levels. We

denote by pi the number of primary variables at level i and by si the number

of secondary variables at level i. Unlike the numbers mi defined above, the pi
and si will not be fixed numbers, but will update as we make contractions. For

example, if we have p3 = 5 and p4 = 0, and contract two (3)-primaries to make

a (4)-primary, we will then have p3 = 3 and p4 = 1. However, the numbers

mi always represent the numbers of variables present before any contractions are

made and do not change during the course of the proof.

Remark 1. Using the aforementioned versions of Hensel’s Lemma, if K is

the unramified quadratic extension of Q2, in order to obtain a non-trivial zero for

F , it is sufficient to construct an (l + 2)-primary for the cases where l ≥ 1 or an

(l+1)-primary for the cases where l = 0. Similarly, if K is any ramified quadratic

extension of Q2, it is sufficient to construct an (2l + 3)-primary.

3. Combinatorial Lemmas: Unramified Extension

The following lemmas will be our basic tools when dealing with contractions

on the case of the unramified quadratic extension of Q2.

Lemma 3.1. (a) If we have four variables at level k, then we can contract

exactly two of them to a new variable at level at least k + 1.

(b) If we have three variables at level k, then we can contract three (two, if the

zeroterms are not all distinct from each other) variables to a new variable at

level at least k + 1.

(c) If we have three variables at level k with the same zeroterm, then we can

contract exactly two variables to a new variable at level k + 1.
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Proof. The first two statements are easy to prove, they follow directly from

the additive structure of OK/(2) ∼= F4. We prove the last statement. Without

loss of generality, we assume k = 0 and that the zeroterm is a0 = 1. Since we are

interested in contracting variables to level 1, we can work modulo 22. Consider

three coefficients (modulo 22)

α1 = 1 + 2β1, α2 = 1 + 2β2, α3 = 1 + 2β3

where β1, β2 and β3 are representatives of OK/(2) ∼= F4.

If α1 + α2 ≡ 0 mod 22, then we have (1 + β1 + β2) ≡ 0 mod 2. It is easy to see

that this occurs just in the four following cases.

Case 1: β1 = 1, β2 = 0 (or β1 = 0, β2 = 1).

If β3 = 0, then α2 + α3 has level 1, and setting x2 = x3 = T gives a new variable

at level 1. If β3 = 1, then α1 + α3 has level 1, and setting x1 = x3 = T works.

Finally, if β3 6∈ {0, 1} we have α1 + α3 and α2 + α3 both at level 1, and either

contraction works.

Case 2: β1 = a 6∈ {0, 1}, β2 = a+ 1 (or β2 = a 6∈ {0, 1}, β1 = a+ 1).

If β3 = a, then β1+β3 has level 1, and we can use the contraction x1 = x3 = T . If

β3 = a+ 1, then β2 +β3 has level 1, and we can use the contraction x2 = x3 = T .

If β3 ∈ {0, 1}, then α1 +α3 and α2 +α3 both have level 1, and either contraction

works. �

Lemma 3.2. If we have 2M − 5 secondary variables at level k with M ≥ 6,

then we can get M − 5 secondary variables at level k + 1 and are left with five

variables at level k.

Proof. Since M ≥ 6 we have 2M − 5 ≥ 7. By the pigeonhole principle,

given seven variables at level k, at least three of them have the same zeroterm

(remember that the residue field in this case is F4). So, from each seven variables

we can contract two of them to a new variable at level k + 1 by Lemma 3.1(c).

Repeating this procedure we have (see Definition 1)

sk+1 ≥
⌊
sk − 7

2

⌋
+ 1 =

⌊
sk − 5

2

⌋
≥
⌊

(2M − 5)− 5

2

⌋
= M − 5, (6)

as desired. �

Corollary 3.3. Let M ≥ 6 and recall the notation of Definition 1.

(a) If sk ≥ 2t+1M−5, then we can obtain by contraction M−5 new (k+ t+1)-

secondaries, leaving five variables at all levels from k to k + t.
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(b) If sk + · · · + sk+t ≥ 2t+1M − 5, we can obtain by contraction M − 5 new

(k + t+ 1)-secondaries.

Proof. First we prove part (a). Let us denote by s∗j the number of (k+ j)-

secondaries we get after contracting secondary variables at lower levels. It follows

from (6) that

s∗k+1 =

⌊
sk − 5

2

⌋
+ sk+1 ≥ 2tM − 5, (7)

and more generally, for j = 1, . . . , t

s∗k+j+1 =

⌊
s∗k+j − 5

2

⌋
+ sk+j+1. (8)

What is happening here is precisely the update on the secondaries we men-

tioned in Definition 1. A simple inductive argument applied to (7) gives

s∗k+j ≥ 2t+1−jM − 5 and sk+t+1 ≥M − 5.

Since we are using Lemma 3.2 recursively, we leave 5 variables at every lower

level, completing the proof of part (a).

The proof of part (b) will be by induction. Observe that if sk+t ≥ 2M−5, the

result follows directly from Lemma 3.2. Let us assume as our inductive hypothesis

that if sk+t−r + · · ·+sk+t ≥ 2r+1M −5 then we can obtain M −5 new (k+ t+1)-

secondaries. Now assume that

sk+t−r−1 + sk+t−r + · · ·+ sk+t ≥ 2r+2M − 5.

We may assume sk+t−r + · · ·+ sk+t ≤ 2r+1M − 6, otherwise we are done, by the

inductive hypothesis. Hence

sk+t−r−1 ≥ 2r+2M − 5− (2r+1M − 6) = 2r+1M + 1 ≥ 2r+1 · 6 + 1. (9)

From (8) we have

s∗k+t−r =

⌊
sk+t−r−1 − 5

2

⌋
+ sk+t−r =

⌊
sk+t−r−1 + 2sk+t−r − 5

2

⌋
.

An inductive argument gives

s∗k+t =

⌊
sk+t−r−1 + 2sk+t−r + · · ·+ 2r+1sk+t − 5(

∑r
i=0 2i)

2r+1

⌋

≥
⌊
sk+t−r−1 + sk+t−r + · · ·+ sk+t − 5(2r+1 − 1)

2r+1

⌋
,
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and it follows from (9) that the numerator of the fraction is always positive. Hence

s∗k+t ≥
⌊

2r+2M − 5− 5(2r+1 − 1)

2r+1

⌋
= 2M − 5,

and the result follows from Lemma 3.2. �

Lemma 3.4. If we have 2M − 1 primary variables at level k with M ≥ 2,

then we can use contractions to form M − 1 primary variables at levels at least

k + 1, leaving at most one variable at level k.

Proof. Indeed, if M = 2, then we have three primaries at level k and

the result follows from Lemma 3.1(b). If M > 2, then from each four variables

at level k we can contract two of them to a new variable at level at least k + 1

(Lemma 3.1(a)). After these contractions have been performed, we still have three

variables unused and by Lemma 3.1(b) we can get one extra primary variable. So

the number of primaries at levels at least k + 1 is⌊
pk − 3

2

⌋
+ 1 =

⌊
pk − 1

2

⌋
≥
⌊

(2M − 1)− 1

2

⌋
= M − 1. (10)

�

Corollary 3.5. Let M ≥ 2 and recall the notation in Definition 1.

(a) If we have pk ≥ 2t+1M − 1 with M ≥ 2, then we can use contractions to

form M − 1 primary variables at levels at least k+ t+ 1, leaving at most one

variable at each level from k to k + t.

(b) If pk + · · ·+ pk+t ≥ 2t+1M − 1 then we can use contractions to form M − 1

primary variables at levels at least k + t+ 1.

Proof. For part (a), observe that by Lemma 3.4, we will have 2tM − 1

primaries at levels at least k + 1. If some of these variables are at levels at least

k + 2, we would need to apply Lemma 3.4 to fewer (k + 1)-primaries to obtain

2t−1M−1 primaries at levels at least k+2. In this sense, the worst case to consider

would be all variables obtained by an application of Lemma 3.4 landing at the

next immediate level. With this understanding, we apply Lemma 3.4 recursively

to the 2tM − 1 primaries at level k + 1 to obtain the result.

For part (b), with the same understanding above, the proof of this result

follows the same lines as the proof of Corollary 3.3(b), but now using Lemma 3.4

and (10) instead of Lemma 3.2 and (6). �

Lemma 3.6. If pk + · · · + pk+t ≥ 2t+1M , with M ≥ 1, and sk+j ≥ 1 for

j = 0, 1, . . . , t, then we can get M primary variables at levels at least k + t+ 1.
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Proof. Here we will follow the same understanding as in the proof of Corol-

lary 3.5 and consider the jumps on the contracted variables being of size exactly

one. Furthermore, since any contraction involving the secondary variables must

necessarily include a primary variable, we can consider, for contractions sake, that

we have at every level an extra primary.

Thus we can now go back to (10) and consider that the number of primary

variables obtained from the pk + 1 (k)-primaries is at least⌊
(pk + 1)− 3

2

⌋
+ 1 =

⌊pk
2

⌋
. (11)

In particular, if pk ≥ 2M , then we can get M primaries at levels at least k + 1.

With the same understanding presented in the proof of Corollary 3.5(b), we can

apply the same inductive argument to conclude the proof. �

4. Combinatorial Lemmas: Ramified Extensions

The following lemmas will be our basic tools when dealing with contractions

on the cases of the ramified quadratic extensions of Q2.

Lemma 4.1. (a) If we have two variables at level k, then they contract to

a new variable at level at least k + 1.

(b) If we have three variables at level k, then we can contract two of them to a

new variable at level at least k + 2.

(c) If we have five variables at level k, then we can contract exactly two variables

to a new variable at level k + 2.

Proof. The first statement follows directly from the additive structure of

OK/(π) ∼= F2. To prove parts (2) and (3) we assume k = 0 and work modulo π3.

Suppose we have five variables at level 0 with coefficients ai = 1+αiπ+βiπ
2, i =

1, . . . , 5. Each set of three coefficients, say a1, a2, a3, has two elements satisfying

αi = αj . Contracting the corresponding variables by setting xi = xj = T , we get

a new variable at level at least 2 (remember that 2 ≡ π2 mod π3). Similarly, two

of the five coefficients satisfy αi = αj and βi = βj . Setting xi = xj = T gives us

a new variable at level 2. �

Lemma 4.2. If we have 2M − 3 variables at level k, with M ≥ 4, then we

can choose between the following two options.

a) We can use contractions to form M − 3 variables at level k + 2 and another

variable at level at least k + 2.
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b) We can use contractions to form M − 3 variables at level k + 2 and leave

three variables at level k.

Proof. Without loss of generality we assume the variables being secondary.

By Lemma 4.1(c), from each set with five variables we can find two that contract

to a new variable at level k+ 2. Applying this successively we get (see Definition

1)

sk+2 ≥
⌊
sk − 5

2

⌋
+ 1 =

⌊
sk − 3

2

⌋
≥
⌊

(2M − 3)− 3

2

⌋
= M − 3. (12)

In this process we are left with three variables at level k not contracted. Then we

can either leave them at level k or apply Lemma 4.1(b) and get another variable

at level at least k + 2. �

Corollary 4.3. Let M ≥ 4 and recall the notation of Definition 1.

(a) If sk ≥ 2t+1M − 3, then we can obtain by contraction M − 3 new variables

at level k + 2(t+ 1), and another extra variable a level at least k + 2(t+ 1).

(b) If sk + sk+2 + · · ·+ sk+2t ≥ 2t+1M − 3, we can obtain by contraction M − 3

new variables at level k + 2(t+ 1), leaving three variables at level k + 2t.

Proof. Without loss of generality we assume the variables being secondary.

The proof follows exactly the same lines as the proof of Corollary 3.3. The only

difference is that now we are applying recursively Lemma 4.2, having (see (12))

s∗k+2 =

⌊
sk − 3

2

⌋
+ sk+2 ≥ 2tM − 3,

and for j = 1, . . . , t+ 1,

s∗k+2j =

⌊
s∗k+2(j−1) − 3

2

⌋
+ sk+2j .

�

Lemma 4.4. Suppose we have two variables at level k, one of them being

primary, and assume that at each level k + j (j = 1, . . . , s), we have one variable

(not necessarily primary). Then we can obtain a primary variable at level at least

k + s+ 1.

Proof. Applying Lemma 4.1(a), we contract the two variables at level k

and get a new primary variable at level k+ r for some r ∈ N. If r ≥ s+ 1 we are

done. If not, just repeat the process. �
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Lemma 4.5. Suppose we have two variables at level k (one of them being

primary) and two variables at level k + 1 (one of them being primary). Then we

can obtain a primary variable at level at least k + 3.

Proof. We apply Lemma 4.1(a) and contract the two variables at level k to

a new primary variable at level at least k+ 1. If the new variable is at level k+ 3

or higher we have nothing to do. If it is at level k + 1 we have three variables at

this level, two of them being primary, and Lemma 4.1(b) gives us a new primary

at level at least k+3. Finally, if it is at level k+2, we are done by Lemma 4.4. �

Lemma 4.6. Suppose we have four primary variables at level k, a fifth

primary at level at least k, three secondaries at level k and one secondary at level

k + 2. Then we can obtain two primary variables at levels at least k + 3.

Proof. We divide the proof according to the level of the fifth primary, which

we denote by T0.

Case 1: The primary T0 is at level at least k + 3.

In this case, we apply Lemma 4.1(b) to the (k)-primaries to get a new primary

at level k + 2 (if it has higher level then we are done) which contracts with the

(k + 2)-secondary to a second primary at level at least k + 3.

Case 2: The primary T0 is at level k + 2.

We contract this variable with the (k + 2)-secondary and get a primary at level

at least k+ 3. Then we apply Lemma 4.1(b) to a set with four (k)-primaries and

one (k)-secondary to obtain two primaries at level k + 2 (if one has higher level

we are done). Then we contract these two primaries and get the result.

Case 3: The primary T0 is at level k + 1.

By Lemma 4.1(b) we can contract two of the four (k)-primaries to a primary at

level at least k + 2, and this primary together with the (k + 2)-secondary will

give a primary at level at least k+ 3. Pairing up the two remaining (k)-primaries

with two (k)-secondaries we obtain two primaries at level at least k + 1. If one

of these two primaries is at level at least k + 3, we are done. If one of them

is a (k + 1)-primary and the other is a (k + 2)-primary, we can include T0 and

apply Lemma 4.4 to obtain a primary at level at least k + 3. If they are both

(k+ 1)-primary, together with T0, we can obtain a primary at level at least k+ 3,

according to Lemma 4.1(b).

Case 4: The primary T0 is at level k.
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We now have five (k)-primaries. By Lemma 4.1(c) we can contract two of them

to obtain a (k + 2)-primary, which together with the (k + 2)-secondary gives a

primary at level at least k + 3. Pairing up the three remaining (k)-primaries

with three (k)-secondaries, we obtain three primaries at levels at least k + 1 and

at most k + 2, otherwise we conclude the proof. If we have, among these three

primaries, either two (k + 2)-primaries or three (k + 1)-primaries, the result will

follow from Lemma 4.1, parts (a) or (b) respectively. Thus we may assume we

have two (k + 1)-primaries and one (k + 2)-primary. Now the result follows from

Lemma 4.4. This concludes the proof. �

Lemma 4.7. Suppose we have three primary variables at level k, a fourth

primary at level at least k, one secondary at level k and two secondaries at level

k + 2. Then we can obtain two primary variables at levels at least k + 3.

Proof. Our goal is to produce two primaries at levels at least k + 2, for in

this case we can pair them up with the two (k + 2)-secondaries to produce the

two primary variables at levels at least k + 3. We will divide the proof according

to the level of the fourth primary, which we denote by T0.

Case 1: The primary T0 is at level at least k + 2.

We apply Lemma 4.1(b) to the (k)-primaries to get a second primary at level at

least k + 2.

Case 2: The primary T0 is at level k + 1.

We apply Lemma 4.1(b) to the (k)-primaries, contracting two of them to a primary

at level at least k+2. Then we apply Lemma 4.4 to the remaining (k)-primary, one

(k)-secondary, and T0, and then we obtain a second primary at level at least k+2.

Case 3: The primary T0 is at level k.

We apply Lemma 4.1(c) and then Lemma 4.1(b) to a set with four (k)-primaries

(including T0) and one (k)-secondary, and construct two primaries at levels at

least k + 2, concluding the proof. �

Lemma 4.8. Suppose one of these situations holds

(a) there exist two (k + 1)-primaries;

(b) there exist two (k)-primaries and one variable (not necessarily primary) at

either level k or k + 1;

(c) there exist one (k)-primary, one (k + 1)-primary and one variable (not nec-

essarily primary) at either level k or k + 1.

Then we can obtain a primary variable at level at least k + 2.
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Proof. If we have two primaries at level k + 1 we contract them and are

done. Assume that the two primaries are at level k. If the third variable is also

at level k then we are done by Lemma 4.1(b), and if the third variable is at level

k + 1 then we are done by Lemma 4.4. Finally, if we have one primary variable

at level k and the other at level k + 1, we use Lemma 4.4 if the third variable is

at level k and Lemma 4.1(a) if it is at level k + 1. �

Remark 2. The next definition will be critical in our proof for ramified

extensions of Q2. It follows from Remark 1 that, in order to prove Theorem 1,

it is sufficient to use a variable from level 0 in a series of contractions to produce

a primary variable at level 2τ + 3. However, this may not always be possible.

During the course of the proof we will find situations where we are unable to

make such contractions, so as an alternative we will use a variable from level 1 in

a series of contractions to produce a variable at level 2τ + 4. By Lemma 2.3, this

also guarantees that F has a non-trivial zero.

Definition 2. We will use the term B-primary to refer to any variable at

level 1, or any variable derived from such a variable through contractions, and

refer to a B-primary variable at level k as a (k)-B-primary variable. Then the

usual primary variables will be called A-primary. Naturally, a variable can be

of types A and B simultaneously. If it is not explicitly said that a variable is

A-primary or B-primary then this variable is secondary.

Lemma 4.9. Suppose we have six A-primaries at level k, three B-primaries

at level k+1, another B-primary at level at least k+1 and one secondary at level

k + 5. Then one of the following possibilities occurs:

(a) we can make an A-primary at level at least k + 5.

(b) we can make a B-primary at level at least k + 6.

Proof. By Lemma 4.1(b) we can contract two B-primaries at level k + 1

to obtain a new B-primary S0 at level at least k + 3. In fact we can assume S0

to be at level at most k + 4, otherwise we would either have part (b) directly or

contracting S0 with the (k+5)-secondary would give part (b), according to Lemma

4.1(a). Observe that we still have one B-primary S1 at level k + 1. Now we can

use Lemma 4.2 to contract two (k)-A-primaries to an A-primary T0 at level k+2.

By Lemma 4.1(b) we can contract two of the remaining four (k)-A-primaries to a

new A-primary T1 at level at least k + 2 and at most k + 4, otherwise we obtain

part (a). After all these contractions are performed we have:

S0 at level either k + 3 or k + 4, S1 at level k + 1, another B-primary at level

between k+1 and k+4 (by the same reasoning we applied to S0), T0 at level k+2,
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T1 at level between k+2 and k+4, two (k)-A-primaries, and a (k+5)-secondary.

Case 1: The B-primary S0 is at level k + 4.

If T1 is at level k+4, together with S0, then we get an A-primary at level at least

k + 5, by Lemma 4.1(a), confirming part (a). If T1 is at level k + 3, we would

have two (k)-A-primaries and also variables at levels k+ 1, k+ 2, k+ 3 and k+ 4

(the variables S1, T0, T1 and S0 respectively). By Lemma 4.4, these variables

suffice to obtain part (a). So assume T1 is at level k + 2. Now contract the two

(k)-A-primaries to get an A-primary T2 at level at least k+ 1 (see Lemma 4.1(a))

and at most k+ 4 (otherwise we get part (a)). If T2 is at level k+ 4 with S0 then

we get (a) (see Lemma 4.1(a)). If T2 is at level k+3 we would have, together with

T0 and T1 at level k + 2 and S0 at level k + 4, part (a) according to Lemma 4.4.

If T2 is at level k+ 2, together with T0 and T1 also at level k+ 2, they would give

an A-primary at level at least k + 4, by Lemma 4.1(b). But this new variable is

either at level k + 5, or together with S0 could be contracted to an A-primary at

level at least k+ 5, confirming part (a). Finally assume T2 is at level k+ 1. Now

we apply Lemma 4.5 to the variables S1, T2 at level k+1 and T0, T1 at level k+2

and obtain an A-primary at level at least k+4. This gives us part (a) since either

this new A-primary is already at level at least k+ 5 or together with S0 it can be

contracted to an A-primary at level at least k+5, concluding the proof of this case.

Case 2: The B-primary S0 is at level k + 3.

If T1 is at level k + 4 we can apply Lemma 4.4 to the two (k)-A-primaries, and

to S1, T0, S0 and T1 to obtain an A-primary at level at least k + 5, confirming

part (a). Assume T1 is at level k + 3. We can again apply Lemma 4.4, now to

the two (k)-A-primaries, S1, and T0, to obtain an A-primary T2 at level at least

k + 3 and at most k + 4 (otherwise we get part (a)). If T2 is at level k+4 we can

obtain part (a) by applying Lemma 4.4 to S0, T1 at level k + 3, and T2 at level

k+ 4. Thus assume T2 is at level k+ 3. Now we have T1, T2 and S0 at level k+ 3,

and this is enough to guarantee part (a), by Lemma 4.1(b). Now assume T1 is

at level k + 2. Besides S0 there is an extra B-primary S2 at level at least k + 1.

We can assume the level of S2 is at most k + 3. Indeed, if it is higher than k + 5

we get part (b); if it is k+ 5 we contract S2 with the (k+ 5)-secondary obtaining

part (b); and if it is k + 4 we get part (a) or part (b), by Case 1 above. If S2 is

at level k+ 3, we can apply Lemma 4.5 to T0, T1, S0 and S2 to obtain a primary

variable at level at least k + 5. If this primary is an A-primary we get part (a).

If this primary is a B-primary then either its level is higher than k + 5 giving us

part (b) directly or it can be contracted together with the (k + 5)-secondary and
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again we obtain part (b). If S2 is at level k + 2, we can apply Lemma 4.1(b) to

S2, T0, and T1 to obtain an A-primary T2 at level k + 4 (otherwise we get part

(a)), leaving one primary T ∗ at level k + 2. By Lemma 4.4, we can contract the

two (k)-A-primaries, S1, T ∗, S0, and T2 to obtain part (a). Finally assume S2 is

at level k + 1. Then we can contract the two (k)-primaries, S1, and S2 to obtain

a primary S∗ at level at least k + 3 (Lemma 4.5). Suppose S∗ is at level at least

k + 5. If S∗ is an A-primary, then we have part (a). If S∗ is a B-primary it can

be contracted with the (k + 5)-secondary giving us part (b). Assume then that

S∗ is at level at most k + 4. Now we have T0, T1 at level k + 2, S0 at level k + 3

and S∗ at level k + 3 or k + 4. Depending on the level of S∗ we can apply either

Lemma 4.4 or Lemma 4.5 to obtain a primary variable U at level at least k + 5.

If U is A-primary we get part (a), and if U is B-primary then either its level is

higher than k + 5 or together with the (k + 5)-secondary we get part (b). This

completes the proof of the lemma. �

Lemma 4.10. Suppose we have five A-primaries at level k, threeB-primaries

at level k + 1, one A-primary at level at least k + 1, one B-primary at level at

least k+1 and one secondary at level k+5. Then one of the following possibilities

occurs.

(a) We can make an A-primary at level at least k + 5.

(b) We can make a B-primary at level at least k + 6.

Proof. To prove Lemma 4.10 we proceed as in the proof of Lemma 4.9.

The only difference is that the points where we had to contract the last two k-

primaries to get another one at level at least k + 1 no longer exist since we are

assuming that we have an extra primary at level at least k + 1. All the other

constructions we did in the proof of Lemma 4.9 can still be performed here. �

5. Proof of Theorem 1

From this point on we consider the form F to be normalized, with coefficients

in OK , degree d = 2l ·m with m ≥ 3 odd, and in N = d2 + 1 variables. According

to Lemma 2.1 we may assume that

F (x1, . . . , xN ) = F0 + πF1 + · · ·+ πd−1Fd−1, (13)
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with all the properties stated in the lemma. In particular, we assume (see (5)),

for j = 0, . . . , d− 2,

j∑
i=0

mi ≥ (j+ 1)
N

d
≥ 3(j+ 1) · 2l + 1 and

d−1∑
i=0

mi = d2 + 1 ≥ 9 · 22l + 1. (14)

The proof will be conducted by analyzing separately the cases where K is

the unramified extension of Q2 or one of the ramified extensions. For a better

understanding, we divide the proof in each case into a few propositions, according

to the value of l in the degree d = 2l ·m, with m ≥ 3. But first we consider the

easier case of d odd.

Proposition 5.1. Let K be a quadratic extension of Q2. Any normalized

form F of odd degree d ≥ 3, in N = d2 + 1 variables has non-trivial zeros over

K.

Proof. It follows from (14) that

m0 ≥ 4 and m0 +m1 ≥ 7.

If K is the unramified extension, it follows from Remark 1 that it suffices to obtain

a primary variable at level at least 1. Since m0 ≥ 4 the result is easily attained

by an application of Lemma 3.1.

Suppose K is a ramified extension. Now we need to obtain a primary variable

at level at least 3. If m0 ≥ 5 (= 2 · 4 − 3), we can use Lemma 4.2(a) to obtain

two (2)-primaries (otherwise we are done). Now the result follows from a simple

application of Lemma 4.1(a). Thus we can assume

m0 = 4 and m1 ≥ 3.

By Lemma 4.1(b) we can obtain a primary variable at level 2 (if it is at a higher

level we are done). Then contracting the two remaining primaries at level 0 we

get the result by Lemma 4.4. �

From now on we will analyse separately the cases of the quadratic extension

of Q2 being unramified or ramified.

Proof of theorem 1 for the unramified quadratic extension of Q2.

Our goal is to obtain a primary variable at level at least l+2, for this suffices

to prove Theorem 1 when K is unramified, according to Remark 1.
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Our starting point is the observation that if m0 ≥ 2l+2 ·2−1 we can obtain a

primary at level at least l + 2 as a direct application of Corollary 3.5, completing

the proof of Theorem 1. Therefore we may assume from now onwards (see (14))

3 · 2l + 1 ≤ m0 ≤ 2l+2 · 2− 2 and m1 + · · ·+mj ≥ 3(j + 1) · 2l + 1−m0 (15)

for j = 1, . . . , l + 1.

Remark 3 (General Strategy). The idea that will be extensively used here

(and also in the ramified case) is the following: once we have a bound on m0,

an application of Corollary 3.5 (Corollary 4.3 for the ramified cases) will give

us primaries at higher levels. Then we start a series of considerations about the

possibilities of the existence of secondaries at higher levels and their consequences

in obtaining primary variables at even higher levels. But after these initial cases

are considered, the aftermath is that we are left with bounds for some values of

the mj . In general we will end up in a situation having, for example, m0 ≤ K0,

mt ≤ K1 and mt+1 ≤ K2. Hence when we write an inequality (see (15)) of the

type

m1 + · · ·+mt−1 ≥M (16)

we mean that the value M was obtained as M = 3(t+ 2)2l + 1−K0 −K1 −K2.

There are many cases to be considered according to the value of m0, and we

start with the next Lemma.

Lemma 5.2. Let K be the unramified quadratic extension of Q2 and F be

a normalized form of degree d = 2l ·m with m ≥ 3 odd and l ≥ 2, in N = d2 + 1

variables. If m0 ≥ 2l · 4 + 1 then F has non-trivial zeros over K.

Proof. We are going to create an (l + 2)-primary. We divide this proof in

a few cases according to the value of m0. By (15) we can assume m0 ≤ 2l · 8− 2.

Case 1: 2l · 6− 1 ≤ m0 ≤ 2l · 8− 2.

By Corollary 3.5, since p0 ≥ 2l+1 · 3− 1 we obtain two primaries at levels at least

l + 1. If one of them is at level at least l + 2, we conclude the proof, so we may

assume we have pl+1 ≥ 2. If ml+1 ≥ 1 we are done by Lemma 3.6, so we assume

ml+1 = 0. In this case (14) gives us (see Remark 3)

m1 + · · ·+ml ≥ ((l + 2)2l · 3 + 1)−m0 −ml+1 ≥ 2l · 6− 5,

since l ≥ 2. Then by Corollary 3.3 we get sl+1 ≥ 1 and we are done.
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Case 2: 2l · 5− 1 ≤ m0 ≤ 2l · 6− 2.

By Corollary 3.5 we obtain pl ≥ 4. If ml ≥ 1, Lemma 3.6 gives us pl+1 ≥ 2 and

then we proceed as we did in the above case, for the number of secondaries is now

larger and we used only one (l)-secondary. If ml = 0 then (see (14))

m1 + · · ·+ml−1 ≥ ((l + 1)2l · 3 + 1)−m0 −ml ≥ 2l−1 · 10− 5.

By Corollary 3.3 we obtain sl ≥ 5 and we can proceed as in case ml ≥ 1.

Case 3: 2l−1 · 9− 1 ≤ m0 ≤ 2l · 5− 2.

By Corollary 3.5 we get pl−1 ≥ 8. Suppose ml−1 ≥ 1. Then Lemma 3.6 gives us

pl ≥ 4. If ml ·ml+1 6= 0 then Lemma 3.6 gives us the result. Note that assuming

ml+1 = 0 we get (see (14))

m1 + · · ·+ml − 2 ≥ ((l + 2)2l · 3 + 1)−m0 −ml+1 − 2 ≥ 2l · 8− 5

(here we are assuming l ≥ 2 and excluding two secondaries that we already used

to obtain pl+1 ≥ 2) and by Corollary 3.3 we get sl+1 ≥ 3. Similarly, assuming

ml = 0 we would get

m1 + · · ·+ml−1 − 1 ≥ ((l + 1)2l · 3 + 1)−m0 −ml − 1 ≥ 2l−1 · 10− 5

and Corollary 3.3 gives us sl ≥ 5. Naturally, if it were ml = 0 = ml+1 the

same argument would give us sl · sl+1 6= 0 and we can proceed as we did when

ml · ml+1 6= 0. If l = 2, then this completes the proof of the lemma, since

22−1 · 9− 1 = 22 · 4 + 1 and m1 6= 0.

Finally, assume that l ≥ 3 and ml−1 = 0. Then we would get

m1 + · · ·+ml−2 ≥ (3l · 2l + 1)−m0 −ml−1 ≥ 2l−2 · 16− 5

and by Corollary 3.3 we may use at most 2l−2 · 6− 5 of these secondaries to get

sl−1 ≥ 1. We may now proceed as we did when ml−1 ≥ 1, as even after excluding

these 2l−2 · 6 − 5 secondaries, we are left with sufficient variables to guarantee

sl · sl+1 6= 0.

Case 4: 2l · 4 + 1 ≤ m0 ≤ 2l−1 · 9− 2.

From (14) we have m1 ≥ 2l · 6 + 1 − m0 ≥ 2l−1 · 3 + 3. By Corollary 3.3 we

can contract at most 2l−1 · 3 − 2 of these variables and get sl−1 ≥ 1, with the
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assurance that there are at least five secondaries left at every level from 1 to l−2.

By Lemma 3.4 we have

p1 + p2 + · · ·+ pl + pl+1 ≥ 2l−1 · 4.

First we show that we can assume pl + pl+1 ≥ 4. Indeed, if we have pl + pl+1 = δ

with 0 ≤ δ ≤ 3, then

p1 + · · ·+ pl−1 ≥ 2l−1 · 4− δ ≥ 2l−1 · (4− δ)

and these variables together with the secondaries at levels 1, 2, . . . , l − 1 can be

contracted (Lemma 3.6) in order to get

pl + pl+1 ≥ 4− δ + δ = 4.

We conclude that if it is ml ·ml+1 6= 0 we get the result by Lemma 3.6. But note

that if we assume ml+1 = 0 we get (see (14))

m1 + · · ·+ml ≥ ((l + 2)2l · 3 + 1)−m0 −ml+1 ≥ 2l−1 · 19− 5

and even after excluding the 2l−1 · 3− 2 secondaries we have already used we can

apply Corollary 3.3 and obtain sl+1 ≥ 3. Similarly, if it were ml = 0 we would

get

m1 + · · ·+ml−1 ≥ ((l + 1)2l · 3 + 1)−m0 −ml ≥ 2l−1 · 13− 5

and again we can use Corollary 3.3 ang get sl ≥ 5. Naturally if we have ml =

0 = ml+1 the same reasoning leads us to sl · sl+1 6= 0.

�

Remark 4. We note here that in the proof of Lemma 5.2, we did not really

use the hypothesis that N = d2 + 1. In reality, the proof only used the bounds on

m0 + · · ·+mj that we obtained for 0 ≤ j ≤ l+ 1. In the remainder of the article,

when we say that something is true “by the proof of Lemma 5.2,” we mean that

although we may not have d2 + 1 variables, these bounds on m0 + · · · + mj still

hold, and therefore the conclusion of this lemma holds.

Proposition 5.3. Let K be the unramified quadratic extension of Q2. Any

normalized form F of degree d = 2l ·m with m ≥ 3 odd and l ≥ 5, in N = d2 + 1

variables has non-trivial zeros over K.
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Proof. We may assume m0 ≤ 2l · 4, according to Lemma 5.2, and also di-

vide the proof in cases depending on the value of m0.

Case 1: 2l−1 · 7 + 1 ≤ m0 ≤ 2l · 4.

We apply Lemma 3.4 and contract the 2l−3 · 28 + 1 variables at level 0 to 2l−4 · 28

new primaries at higher levels. Then we have

p1 + · · ·+ pl+1 ≥ 2l−4 · 28. (17)

We are excluding the case of primaries at levels at least l + 2, otherwise we are

done. We will analyze two subcases.

Subcase A:
∑
i≥2

pi ≥ 2l−4 · 4.

First we show that we can assume
∑

i≥2 pi ≥ 2l−5 ·32. Indeed, assuming otherwise

we would get ∑
i≥2

pi = 2l−4 · 4 + ε, with 0 ≤ ε < 2l−5 · 24.

Since m0 ≤ 2l · 4 we have m1 ≥ 2l · 2 + 1 ≥ 2l−2 · 8− 3 (see (14)) and by Corollary

3.3 we get sj ≥ 1 for j = 1, . . . , l − 1. By (17) we have

p1 ≥ 2l−4 · 24− ε ≥ 2(2l−5 · 24− ε)

and since s1 ≥ 1, Lemma 3.6 gives us 2l−5 · 24− ε new primaries at levels at least

2. So we have

l+1∑
i=2

pi ≥ 2l−4 · 4 + ε+ 2l−5 · 24− ε = 2l−5 · 32.

Now let δ be the number of these primaries that are at levels higher than l − 3.

We can assume δ ≥ 32. Indeed, if that is not the case, we would have

l−4∑
i=2

pi ≥ 2l−5 · 32− δ ≥ 2l−5 · (32− δ)

and applying Lemma 3.6 to these variables and to the secondaries at levels

2, . . . , l − 4 we obtain 32 − δ new primaries at levels at least l − 3. Since we

already had δ primaries at these levels, we have
∑l+1

i=l−3 pi ≥ 32. Furthermore, we

still have sj ≥ 1 for j = l− 3, l− 2, l− 1. Assume ml ≥ 7. Then Lemma 3.2 gives

us sl ≥ 1 and sl+1 = 1 and we apply Lemma 3.6 to the primaries and secondaries
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at levels at least l− 3 and get the result. Now if ml ≤ 6, then we would have (see

(14) and remember that l ≥ 5)

m1 + · · ·+ml−1 ≥ (3l − 1)2l − 5 ≥ 2l · 14− 5.

Since we have already used 2l · 2 + 2 of these variables (the (1)-secondaries con-

tracted at the beginning of subcase A and possibly one more in our appeal to

Lemma 3.6) we have

s1 + · · ·+ sl−1 ≥ 2l · 12− 7,

which suffices to guarantee sl ≥ 7 (Corollary 3.3) and we can proceed as above.

Subcase B:
∑
i≥2

pi < 2l−4 · 4.

Here we have p1 ≥ 2l−4 · 24. At this point we introduce the cyclic change of

variables

F (1) =
1

2
F (2x1, . . . , 2xs, xs+1, . . . , xN ), (18)

where x1, . . . , xs are the variables at level 0 that remained untouched. Since we

are working over a field K, it is simple to see that any non-trivial zero of F (1)

gives a non-trivial zero for F . Hence whenever it is convenient, we are going to

apply this change of variables and proceed with the proof. We denote by m
(1)
i

the number of variables at level i in the form F (1). Thus the variables of F (1)

satisfy

m
(1)
0 ≥ m1 + p1 = m0 +m1 − (m0 − p1)

≥ 2l · 6 + 1−
(

2l · 4− 2l · 24

16

)
= 2l ·

(
7

2

)
+ 1. (19)

We also have for j = 1, . . . , d− 1

j∑
i=0

m
(1)
i ≥ (m1 + p1) +

j+1∑
i=2

mi =

j+1∑
i=0

mi − (m0 − p1)

≥ (j + 2)2l · 3 + 1−
(

2l · 4− 2l · 24

16

)
= 2l ·

(
3(j + 1) +

1

2

)
+ 1. (20)
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Now we try to find non-trivial zero for F (1). By the proof of Lemma 5.2

(see Remark 4) we can assume 2l · ( 7
2 ) + 1 ≤ m

(1)
0 ≤ 2l · 4. So we proceed as

before and use the variables at level 0 to produce 2l−4 · 28 primaries at levels at

least 1. We denote by p
(1)
i the number of these variables that have level i. By the

proof of Subcase A, we only have to work with
∑
i≥2

p
(1)
i < 2l−4 · 4. So we assume

p
(1)
1 ≥ 2l−4 · 24 and, applying the change of variables (18), we get an equivalent

form F (2) that satisfies

m
(2)
0 ≥ m1

1 + p11 = m1
0 +m1

1 − (m1
0 − p11)

≥ 2l · 6 + 1 + 2l ·
(

1

2

)
−
(

2l · 4− 2l · 24

16

)
= 2l · 4 + 1 (21)

and

m
(2)
0 + · · ·+m

(2)
j ≥ (j + 1)2l · 3 + 1.

By Lemma 5.2, we can find non-trivial zero for F (2).

Case 2: 2l · 3 + 1 ≤ m0 ≤ 2l−1 · 7.

We will follow the same lines as in Case 1. First we apply Lemma 3.4 to the vari-

ables at level 0 and get 2l−4 · 24 primaries at levels at least 1. Then we analyze

two subcases.

Subcase A:
∑
i≥2

pi ≥ 2l−4 · 8.

Again we start by showing that we can assume
∑

i≥2 pi ≥ 2l−5 · 32. Indeed, if

that is not the case, we would have∑
i≥2

pi = 2l−4 · 8 + ε with 0 ≤ ε < 2l−5 · 16,

which would imply p1 ≥ 2l−4 ·16−ε ≥ 2(2l−5 ·16−ε). We have m1 ≥ 2l−1 ·5+1 (see

(14)) and then we use Corollary 3.3 to contract these variables and get sj ≥ 1 for

j = 1, 2, . . . , l−1. Applying Lemma 3.6 to the (1)-primaries and one (1)-secondary

we get 2l−5 · 16− ε new primaries at levels at least 2 which gives us∑
i≥2

pi ≥ 2l−5 · 16 + ε+ 2l−5 · 16− ε = 2l−5 · 32.

Now we can proceed exactly as in Subcase A of Case 1. Indeed, here we have

many more secondaries (due to the smaller bound on m0) so even though we have
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used more (1)-secondaries, this is balanced by the extra secondaries we have now

and every step we did there can also be done here.

Subcase B:
∑

i≥2 pi < 2l−4 · 8.

Here we have p1 ≥ 2l−4 · 16 + 1. We apply the change of variables (18) and get

an equivalent form F (1) satisfying

m
(1)
0 ≥ m1 + p1 = m0 +m1 − (m0 − p1) = 2l ·

(
7

2

)
+ 2 (22)

and

m
(1)
0 + · · ·+m

(1)
j ≥ (j + 1)2l · 3 + 1

for j = 1, . . . , d−1. But then by Case 1 we can find non-trivial zero for F (1). �

Proposition 5.4. Let K be the unramified quadratic extension of Q2. Any

normalized form F of degree d = 24 ·m with m ≥ 3 odd in N = d2 + 1 variables

has non-trivial zeros over K.

Proof. By Lemma 5.2 we can assume 24 · 3 + 1 = 49 ≤ m0 ≤ 64 = 24 · 4.

Our goal here is to create a (6)-primary variable.

Case 1: 63 ≤ m0 ≤ 64.

We use Lemma 3.4 and contract the variables at level 0 to create 31 primaries at

levels at least 1. That is,

31 = p1 + p2 + · · ·+ p5.

We now show that if p2 + · · ·+ p5 ≥ 16 then we can create a (6)-primary. Since

m0 ≤ 64 we have m1 ≥ 33 (see (14)) and then we apply Corollary 3.3 in order to

get s1, s2, s3 ≥ 1. Note that these contractions use at most 19 variables. We can

assume p4 + p5 ≥ 4. Indeed, supposing otherwise we have

p4 + p5 = ε and p2 + p3 ≥ 16− ε ≥ 4(4− ε), 0 ≤ ε ≤ 3.

Applying Lemma 3.6 to the variables at levels 2 and 3 we get 4− ε new primaries

at levels at least 4 and then we have p4 + p5 ≥ ε + 4 − ε = 4. If m4 ≥ 7 then

we are done, since we can use Lemma 3.2 to obtain s4, s5 ≥ 1 and then create a

(6)-primary using Lemma 3.6. But if m4 ≤ 6, we get m1 + · · · + m3 ≥ 171 (see

(14)) and since at most 19 variables were used in the contractions involving the

(1)-secondaries we still have at least 152 variables at our disposal. Then we can
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use these variables to create more than seven (4)-secondaries applying Corollary

3.3.

So we can assume p1 ≥ 16. If p1 = 16, we use these variables and one (1)-

secondary to get eight new primaries at higher levels (Lemma 3.6) and then

p2 + · · · + p5 ≥ 23 ≥ 16 so we can proceed as we just did above. This same

argument shows that we only have to analyze the case p1 = 31. In this case we

apply the change of variables (18) and get an equivalent form F (1) satisfying

m
(1)
0 ≥ 4 · 24

and m
(1)
0 + · · ·+m

(1)
j ≥ (3j+ 4) · 24 for j = 1, 2, . . . , d− 1. It is sufficient to find a

non-trivial zero for F (1). By the proof of Lemma 5.2 we can assume m
(1)
0 = 64.

Repeating the argument we just gave, we obtain an equivalent form F (2) for

which

m
(2)
0 ≥ 5 · 24 − 1

and m
(2)
0 + · · ·+m

(2)
j ≥ (3j+ 5) · 24− 1 for j = 1, · · · , d− 2. The proof of Lemma

5.2 shows that the form F (2) has a non-trivial zero.

Case 2: 61 ≤ m0 ≤ 62.

We use Lemma 3.4 to contract the variables at level 0 and get 30 primaries at

levels at least 1. Just as in Case 1, if p2 + · · ·+ p5 ≥ 16 we can get a (6)-primary

since here we have even more secondaries due to the smaller bound on m0. So

the reasoning used in Case 1 shows that we can assume p1 ≥ 29. We apply the

change of variables (18) to create an equivalent form F (1) for which

m
(1)
0 ≥ 4 · 24

and m
(1)
0 + · · ·+m

(1)
j ≥ (3j+ 4) · 24 for j = 1, . . . , d− 1. By Case 1 we know that

the form F (1) has a non-trivial zero.

Case 3: 57 ≤ m0 ≤ 60.

We contract the variables at level 0 and get 28 primaries at levels at least 1

(Lemma 3.4). The same argument used in Case 1 shows that we can assume

p1 ≥ 25. We apply the change of variables (18) to create an equivalent form F (1)

for which

m
(1)
0 ≥ 4 · 24 − 2
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and m
(1)
0 + · · · + m

(1)
j ≥ (3j + 4)24 − 2 for j = 1, . . . , d − 1. By Case 2 we know

that F (1) has a non-trivial zero.

Case 4: 49 ≤ m0 ≤ 56.

We contract the variables at level 0 and get 24 primaries at levels at least 1

(Lemma 3.4). The same argument used in Case 1 shows that we can assume

p1 ≥ 17. We apply the change of variables (18) to create an equivalent form F (1)

for which

m
(1)
0 ≥ 4 · 24 − 6

and m
(1)
0 + · · · + m

(1)
j ≥ (3j + 4)24 − 6 for j = 1, . . . , d − 1. By Case 3 we know

that F (1) has a non-trivial zero.

�

Proposition 5.5. Let K be the unramified quadratic extension of Q2. Any

normalized form F of degree d = 23 ·m with m ≥ 3 odd, in N = d2 + 1 variables

has non-trivial zeros over K.

Proof. Our goal now is to obtain a (5)-primary variable. By Lemma 5.2

we only need to analyze the cases 23 · 3 + 1 = 25 ≤ m0 ≤ 32 = 23 · 4.

Case 1: 31 ≤ m0 ≤ 32.

We use Lemma 3.4 and contract the variables at level 0 to 15 primaries at levels

at least 1.

We assert that if p2 + p3 + p4 ≥ 8, then we can create a (5)-primary. Since

m0 ≤ 32 we have m1 ≥ 17 (see (14)) and by Lemma 3.2 we can contract two of

these variables and get s2 ≥ 1. We can assume p3 + p4 ≥ 4. Indeed, supposing

otherwise we have

p3 + p4 = ε and p2 ≥ 8− ε ≥ 2(4− ε), 0 ≤ ε ≤ 3.

Then applying Lemma 3.6 to the variables at level 2 we get 4− ε new primaries

at levels at least 3 and we have p3 + p4 ≥ 4. If m3 ≥ 7 we can obtain s3, s4 ≥ 1

(Lemma 3.2), and then Lemma 3.6 gives us a (5)-primary. So we can assume

m3 ≤ 6. In this case we have (see (14))

m1 +m2 ≥ 59.

Although we have already used a few variables from level 1, in the worst case we

are still left with at least 56 of these variables, and we can use them to obtain
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s3 ≥ 7 (Corollary 3.3) and proceed as before.

Hence we can assume p1 ≥ 8. If p1 = 8, then we use one (1)-secondary and the

(1)-primaries to get four new primaries at levels at least 2 (Lemma 3.6). This

implies p2 + p3 + p4 ≥ 7 + 4 = 11 > 8 and we can deal with this case as above.

Following this reasoning we conclude that the only delicate case is p1 = 15. In

this case we apply the change of variables (18) and get an equivalent form F (1)

that satisfies

m
(1)
0 ≥ 4 · 23

and m
(1)
0 + · · ·+m

(1)
j ≥ (3j + 4) · 23 for j = 1, . . . , d− 1. It is sufficient to find a

non-trivial zero for F (1). By the proof of Lemma 5.2 we can assume m
(1)
0 = 4 ·23

and use the same approach as above. That is, we use the variables at level 0

to create 15 primaries at levels at least 1. Again we can assume p1 = 15 and

then applying the change of variables (18) we get a second equivalent form F (2)

satisfying

m
(2)
0 ≥ 39 > 23 · 4 + 1

and m
(2)
0 + · · · + m

(2)
j ≥ (3j + 5) · 23 − 1 for j = 1, . . . , d − 2. We can obtain a

non-trivial zero for this form by the proof of Lemma 5.2.

Case 2: 29 ≤ m0 ≤ 30.

We contract the variables at level 0 to 14 primaries at levels at least 1 (Lemma

3.4). Just as in Case 1, if p2 + p3 + p4 ≥ 8 we can get a (5)-primary since here

we have even more secondaries due to the smaller bound on m0. So the same

reasoning used in Case 1 shows that we can assume p1 ≥ 13. We apply the change

of variables (18) and create an equivalent form F (1) satisfying

m
(1)
0 ≥ 32

and m
(1)
0 + · · ·+m

(1)
j ≥ (3j + 4) · 23 for j = 1, . . . , d− 1. By Case 1 we can find

a non-trivial zero for this form.

Case 3: 25 ≤ m0 ≤ 28.

We contract the variables at level 0 to 12 primaries at levels at least 1. The same

reasoning used in Case 1 shows that we can assume p1 ≥ 9. We apply the change

of variables (18) and create an equivalent form F (1) satisfying

m
(1)
0 ≥ 30

and m
(1)
0 + · · · + m

(1)
j ≥ (3j + 4) · 23 − 2 for j = 1, . . . , d − 1. By Case 2 we can

find a non-trivial zero for this form. �
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Proposition 5.6. Let K be the unramified quadratic extension of Q2. Any

normalized form F of degree d = 22 ·m with m ≥ 3 odd, in N = d2 + 1 variables

has non-trivial zeros over K.

Proof. Now we have to create a (4)-primary. By Lemma 5.2 we only need

to analyze the cases 22 · 3 + 1 = 13 ≤ m0 ≤ 16 = 22 · 4.

Case 1: 15 ≤ m0 ≤ 16.

We apply Lemma 3.4 to the variables at level 0 and obtain p1 + p2 + p3 ≥ 7.

We assert that if p2 + p3 ≥ 4, then we can create a (4)-primary. Since m0 ≤ 16

we have m1 ≥ 9 (see (14)) and Lemma 3.2 gives us s1, s2 ≥ 1. We can assume

p3 ≥ 2 (otherwise apply Lemma 3.6). If m3 ≥ 1 we are done by Lemma 3.6. If

not we have m1 + m2 ≥ 33 (see (14)). Of these variables, there are still at least

30 remaining after our previous contractions, and we can use them to create a

(3)-secondary by Corollary 3.3.

Then we can assume p1 ≥ 4. If 4 ≤ p1 ≤ 6 then we can use Lemma 3.4 or 3.6 to

contract the (1)-primaries to get p2 + p3 ≥ 4 (remember that m1 ≥ 9) and then

proceed as above. Even though we may have used an extra secondary in an appeal

to Lemma 3.6, we still have enough variables to carry out the argument. So we

assume p1 = 7. We apply the change of variables (18) to create an equivalent

form F 1 satisfying

m1
0 ≥ 16

and m1
0 + · · · + m1

j ≥ (3j + 4) · 22 for j = 1, 2, . . . , d − 1. It is sufficient to find

non-trivial zero for F 1. By the previous cases we only need to analyze the case

m1
0 = 16. Proceeding exactly as above, we get a second equivalent form F 2

satisfying

m2
0 ≥ 19

and m2
0 + · · ·+m2

j ≥ (3j+ 5) · 22− 1 for j = 1, 2, . . . , d− 2. By the previous cases

this form has a non-trivial zero.

Case 2: 13 ≤ m0 ≤ 14.

We contract the variables at level 0 and get p1 + p2 + p3 = 6 (Lemma 3.4). Just

as in Case 5, if p2 + p3 ≥ 4 we can get a (4)-primary (in fact here we have more

secondaries due to the smaller bound on m0). So we may assume p1 ≥ 3. In fact,

we can assume p1 ≥ 5, for if that is not the case we can apply Lemma 3.6 to obtain

p2 + p3 ≥ 4 and then proceed as above (since m0 ≤ 14 we have m1 ≥ 11). So
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we assume p1 ≥ 5 and make the change of variables (18) to create an equivalent

form F 1 satisfying

m1
0 ≥ 15

and m1
0 + · · ·+m1

j ≥ (3j + 4)22 − 1 for j = 1, 2, . . . , d− 1. By our previous cases

we know that F 1 has a non-trivial zero.

�

Proposition 5.7. Let K be the unramified quadratic extension of Q2. Any

normalized form F of degree d = 2 ·m with m ≥ 3 odd, in N = d2 + 1 variables

has non-trivial zeros over K.

Proof. Now we need to construct a (3)-primary. Again we divide the proof

into cases according to the value of m0 ≥ 7.

Case 1: m0 ≥ 15.

The result follows directly from Corollary 3.5.

Case 2: 11 ≤ m0 ≤ 14.

Here we analyze two subcases.

Subcase A: m2 ≥ 1.

We apply Lemma 3.4 to the variables at level 0 and get p2 ≥ 2. Then we use

Lemma 3.6 to create a (3)-primary.

Subcase B: m2 = 0.

In this case we have m1 ≥ 5 (see (14)). If at least three of these (1)-secondaries

have the same zeroterm, we use Lemma 3.1(c) to create a (2)-secondary and pro-

ceed as in Subcase A. Assume then that at most two of these five (1)-secondaries

have equal zeroterms. Then we can find two pairs of (1)-secondaries such that the

variables in each pair have distinct zeroterms (see (2) and (3)). Applying Lemma

3.4 to the variables at level 0 we get p1 +p2 ≥ 5. If p2 ≥ 3 we are done by Lemma

3.4. If p2 = 1 or 2, then p1 ≥ 3 and each pair of (1)-secondaries with distinct

zeroterms together with one (1)-primary can be used to produce a (2)-primary

(Lemma 3.1(b)). Then we have p2 ≥ 3 and can proceed as before. Finally, if

p3 = 0 then each pair of (1)-secondaries with distinct zeroterms together with

one (1)-primary can be used to produce a (2)-primary (Lemma 3.1(b)), and with

the remaining three (1)-primaries we construct a third (2)-primary using Lemma

3.4. We then proceed as before.
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Case 3: 9 ≤ m0 ≤ 10.

Here we have m1 ≥ 3 (see (14)). We contract the variables at level 0 and get

p1 + p2 ≥ 4 (Lemma 3.4). Then Lemma 3.6 gives us p2 ≥ 2. If m2 ≥ 1, we are

done by Lemma 3.6. If not, we must have m1 ≥ 9. At most one of these variables

has been used (in our appeal to Lemma 3.6), and by Lemma 3.2 we can use the

remaining eight to create a (2)-secondary.

Case 4: 7 ≤ m0 ≤ 8.

We apply Lemma 3.4 to the variables at level 0 and get p1 + p2 ≥ 3.

First assume p2 ≥ 1. Since m0 ≤ 8 we have m1 ≥ 5 (see (14)). If three of these

(1)-secondaries have the same zeroterm, then we can contract two of them and

have si ≥ 1 for i = 1, 2 (Lemma 3.1(c)). Then we can assume p2 ≥ 2 (otherwise

apply Lemma 3.6 to the variables at level 1) and we can create a (3)-primary

using Lemma 3.6. On the other hand, if we can not choose three (1)-secondaries

with equal zeroterms, there must be two pairs of (1)-secondaries such that in

each pair the variables have distinct zeroterms (see (2) and (3)). Each of these

pairs, together with one (1)-primary, can be contracted to a (2)-primary (Lemma

3.1(b)) and this construction allows us to get p2 ≥ 3. Then we can create a

(3)-primary by Lemma 3.4.

Then we can assume p1 ≥ 3. We again appeal to the change of variables (18) to

get an equivalent form F (1) satisfying

m
(1)
0 ≥ 8

and m
(1)
0 + · · · + m

(1)
j ≥ (j + 1)2 · 3 + 2, for j = 1, . . . , d − 1. It is sufficient to

find a non-trivial zero for F (1). By our previous cases we can assume m
(1)
0 = 8.

Repeating the arguments we just made, we obtain a second equivalent form F (2)

satisfying

m
(2)
0 ≥ 9

and m
(2)
0 + · · ·+m

(2)
j ≥ (j+ 1)2 ·3 + 3, for j = 1, . . . , d−2. By our previous cases

the form F (2) admits non-trivial zero.

�

Now the proof of Theorem 1 for K the unramified quadratic extension of Q2

follows directly from Propositions 5.1, 5.3, 5.4, 5.5, 5.6 and 5.7.
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Proof of theorem 1 for ramified quadratic extensions of Q2

We are assuming F to have all the properties described at the beginning of

section 5. Our goal is to obtain a primary variable at level at least 2l+ 3, for this

suffices to prove Theorem 1 when K is ramified, according to Remark 1.

Lemma 5.8. Let K be a ramified quadratic extension of Q2 and F be a

normalized form of degree d = 2l · m with l ≥ 1, m ≥ 3 odd, in N = d2 + 1

variables. If m0 ≥ 2l · 6− 3 then F has non-trivial zeros over K.

Proof. Let us assume m0 ≥ 2l+1 ·4−3. By Corollary 4.3(a), we can obtain

p2l+2 ≥ 1 and another primary at level at least 2l+ 2. We may assume p2l+2 ≥ 2,

otherwise we are done. But this is enough to get a primary at level 2l + 3 or

higher by Lemma 4.1(a).

Now assume 2l · 7 − 3 ≤ m0 ≤ 2l · 8 − 4. We apply Corollary 4.3 to the

variables at level 0 and get four (2l)-primaries and another primary at level at

least 2l and at most 2l+2 (otherwise we are done). If the level of this last primary

is higher than 2l we contract two pairs of the four (2l)-primaries and get two more

primaries at levels higher than 2l (Lemma 4.1(a)). Then the result follows from

Lemma 4.8. Now if p2l ≥ 5 we get p2l+2 ≥ 2 (Lemma 4.1(b)) and these two

variables can be contracted to a (2l + 3)-primary by Lemma 4.1(a).

Finally, assume 2l ·6−3 ≤ m0 ≤ 2l ·7−4. We can apply Corollary 4.3 to get

three primaries at level 2l and another primary at level at least 2l. If p2l+2 ≥ 1

we can contract the three (2l)-primaries to obtain p2l+2 ≥ 2, by Lemma 4.1(b),

and complete the proof by applying Lemma 4.1(a). Hence we may assume that

either p2l ≥ 4 or else that p2l ≥ 3 and p2l+1 ≥ 1. In both cases we can use Lemma

4.1(a) in order to get two primaries at levels at least 2l + 1 and at most 2l + 2.

If m2l+1 ≥ 1 or m2l+2 ≥ 1 we would get a (2l + 3)-primary by applying Lemma

4.8. So we assume m2l+1 = m2l+2 = 0, and it follows from (14) that

m1 + · · ·+m2l ≥ [(2l + 2) + 1]2l · 3 + 1−m0 −m2l+1 −m2l+2

≥ (3l + 1)2l+1 + 5.

Since at least (3l + 1)2l + 3 of these secondary variables are at levels which have

the same parity, it follows from Corollary 4.3(b) that we can get either s2l+2 ≥ 1

or s2l+1 ≥ 1 and complete the proof by applying Lemma 4.8. �

Proposition 5.9. Let K be a ramified quadratic extension of Q2. Any

normalized form F of degree d = 2 ·m with m ≥ 3 odd, in N = d2 + 1 variables

has non-trivial zeros over K.
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Proof. By Remark 1 it is enough to produce a primary at level at least 5.

It follows from (14) and Lemma 5.8 that we may assume

7 ≤ m0 ≤ 8.

By Lemma 4.2 we obtain p2 ≥ 2 and another primary at level at least 2 and at

most 4 (otherwise we are done). Suppose this extra primary is at level 3 or 4.

By Lemma 4.1(a) applied to p2 ≥ 2 we obtain another primary at level 3 or 4.

If either m3 6= 0 or m4 6= 0 we can apply Lemma 4.8 to conclude the proof. If

m3 = m4 = 0 then (see (14))

m1 +m2 ≥ 31−m0 −m3 −m4 ≥ 31− 8 = 23.

Thus either m1 ≥ 12 or m2 ≥ 12. In any case, Lemma 4.2 gives either s3 6= 0

or s4 6= 0, and we can proceed as above. Hence the extra primary is at level 2 and

we must have p2 ≥ 3. If m2 ≥ 3, then since p2 ≥ 3 we apply Lemma 4.1(a) and

get three primaries at levels 3 or 4 and then Lemma 4.8 gives us a (5)-primary.

If m2 ≤ 2, then we can apply Lemma 4.1(b) to the three primaries at level 2 to

obtain p4 ≥ 1. If m4 6= 0 the result follows from Lemma 4.1(a). Hence we may

assume m2 ≤ 2 and m4 = 0. By (14) we have

m1 ≥ 19−m0 −m2 ≥ 19− 8− 2 = 9.

Now we turn our attention to B-primaries, and according to Remark 2, to con-

clude the proof it is sufficient to produce a B-primary at level at least 6. Let

us use the notation pk(B) to represent the number of (k)-B-primaries. Since

m1 ≥ 9, it follows from Lemma 4.2 that p3(B) ≥ 3. Using Lemma 4.1(b) on these

B-primaries, we get p5(B) ≥ 1 (otherwise we are done). Therefore we must have

m5 = 0, as otherwise Lemma 4.1(a) would give us the result. If m3 ≥ 5 we could

apply Lemma 4.1(c) to get s5 6= 0, and the result would follow. Therefore we may

assume

m2 ≤ 2, m3 ≤ 4, m4 = 0, and m5 = 0.

Then we have (see (14))

m1 ≥ 37−m0 −m2 −m3 −m4 −m5 ≥ 37− 8− 2− 4 = 23.

By Corollary 4.3 applied to m1 we can get p5(B) ≥ 3, which is enough to produce

a (B)-primary at level at least 6 by Lemma 4.1(a), concluding the proof. �
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Lemma 5.10. Let K be a ramified quadratic extension of Q2 and F be a

normalized form of degree d = 2l ·m with m ≥ 3 odd, in N = d2 + 1 variables. If

l ≥ 2 and m0 ≥ 2l · 5− 3, then F has non-trivial zeros over K.

Proof. By Lemma 5.8 we may assume m0 ≤ 2l · 6 − 4. Using Corollary

4.3 we get seven (2l− 2)-primaries and an eighth primary at level at least 2l− 2.

(Naturally we assume the level of this last variable is less than 2l+3.) Regardless

of the level of this eighth primary, we can use Lemma 4.1 to get two primary

variables at level 2l, one at a level at least 2l and a fourth at a level at least 2l−1.

We analyze two subcases.

Subcase A: p2l+1 + p2l+2 ≥ 1.

Here we apply Lemma 4.1(a) to the two primaries at level 2l and get a second

primary at level 2l + 1 or 2l + 2. Then if m2l+1 ≥ 1 or m2l+2 ≥ 1 we can get

a (2l + 3)-primary by applying Lemma 4.8. So we assume m2l+1 = m2l+2 = 0.

Now we have (see (14))

m1 + · · ·+m2l ≥ (2l + 3)2l · 3 + 1−m0 −m2l+1 −m2l+2

≥ 2l · (6l + 3) + 5 ≥ 2l · 15 + 5.

At least 2l−1 ·15+3 of these variables are at levels of equal parity so we can apply

Corollary 4.3 and get s2l+1 ≥ 1 or s2l+2 ≥ 1, so we can repeat the arguments

above and get the result.

Subcase B: p2l+1 + p2l+2 = 0.

If p2l ≥ 4 we can apply Lemma 4.1(b) to get p2l+2 ≥ 1 and p2l ≥ 2 and we can

proceed as in Subcase A. Thus assume p2l = 3 and p2l−1 = 1. If m2l−1 6= 0,

then this fact, along with p2l−1 = 1, gives us a fourth primary at level at least

2l (Lemma 4.1(a)) and this case has already been treated (The one secondary

variable we have used here will not make a difference in the argument.) If m2l ≥ 3

then since p2l = 3, we can get three primaries at levels at least 2l + 1, which is

enough to get a primary at level at least 2l + 3, according to Lemma 4.8. Hence

we may assume m2l−1 = 0 and m2l ≤ 2. Then we have (see (14))

m1 + · · ·+m2l−2 ≥ (2l + 1)2l · 3 + 1−m0 −m2l−1 −m2l ≥ (6l − 3) · 2l + 3

and at least (6l− 3) · 2l−1 + 1 of these variables are at levels of equal parity so we

can apply Corollary 4.3 and get either s2l−1 ≥ 6 or s2l ≥ 6. Now we can proceed

as we did when m2l−1 6= 0 or m2l ≥ 3. �



34 Bruno de Paula Miranda, Hemar Godinho and Michael P. Knapp

Proposition 5.11. Let K be a ramified quadratic extension of Q2. Any

normalized form F of degree d = 22 ·m with m ≥ 3 odd, in N = d2 + 1 variables

has non-trivial zeros over K.

Proof. By Lemma 5.10 and (14) we may assume 13 ≤ m0 ≤ 16. Now our

goal is to produce a primary variable at level at least 7, by Remark 1. Applying

Lemma 4.2, we get five (2)-primaries and another primary at level at least 2.

First assume m2 + m4 ≥ 5. We assert that we can create two primaries at

levels at least 5. Indeed, if m4 = 0 we get m2 ≥ 5 and applying Lemma 4.2

we get s2 ≥ 3 and s4 ≥ 1 so Lemma 4.6 gives us the result. If m4 = 1 we get

the result again applying Lemma 4.6. If m4 ≥ 2 we apply Lemma 4.2 to the

(2)-primaries and get two new primaries, one at level 4 and the other at level at

least 4. These primaries can be contracted with the (4)-secondaries in order to

create two primaries at levels at least 5 (Lemma 4.1(a)). Since in each case we

can obtain these two primaries, we conclude that if we had m5 6= 0 or m6 6= 0

we would be done by Lemma 4.8. So we assume m5 = m6 = 0. But this implies

(see (14)) m1 + · · ·+m4 ≥ 69 and excluding the (possibly) five secondaries used

earlier, we would have either s1 + s3 ≥ 32 or s2 + s4 ≥ 32. Applying Corollary

4.3, we get s5 6= 0 or s6 6= 0.

Thus let us assume m2 +m4 ≤ 4. By (14) we have m1 ≥ 37−m0−m2 ≥ 17.

We now try to make a B-(8)-primary (see Remark 2). Corollary 4.3 gives us two

B-primaries at level 5 and another B-primary at level at least 5. To get these

variables we used at most 14 (1)-secondaries. We analyze two further subcases.

Subcase A: m3 +m5 ≥ 13.

We apply Lemma 4.2 repeatedly and get s5 ≥ 3 and s7 ≥ 1. Using Lemma 4.1(a)

we can contract the B-primaries and secondaries at level 5 to two new primaries

at levels at least 6 and the result follows from Lemma 4.8.

Subcase B: m3 +m5 ≤ 12.

Here we have (see (14))

m1 ≥ 6 · 22 · 3 + 1− 4− 12− 16 = 41 > 23 · 5

and applying Corollary 4.3 we get two B-(7)-primaries that can be contracted to

a B-primary at level at least 8 by Lemma 4.1(a).

�

Proposition 5.12. Let K be a ramified quadratic extension of Q2. Any

normalized form F of degree d = 2l ·m variables has non-trivial zeros over K.
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Proof. By (14) and Lemma 5.10 we may assume

2l · 3 + 1 ≤ m0 ≤ 2l · 5− 4.

We are going to divide this proof into many cases according to the value of m0.

Case 1: 2l · ( 9
2 )− 3 ≤ m0 ≤ 2l · 5− 4.

We apply Corollary 4.3 and get six primaries at level 2l− 2 and another primary

at level at least 2l − 2. We have (see (14))

m1 +m2 ≥ (2l · 9 + 1)−m0 ≥ 2l · 4 + 5, (23)

and we analyze two subcases.

Subcase A. Suppose m2 +m4 + · · ·+m2l−2 ≥ 2l − 3.

We either have m2l−2 ≥ 1 or else we can apply Corollary 4.3(b) to the variables

at levels 2, 4, . . . , 2l − 4 and get s2l−2 ≥ 1. We now have seven variables at level

2l−2, six of them being primary. However, if we contract the secondary, it will be

with a primary, so we can act as though all seven variables were primary. We still

have an eighth primary at level at least 2l − 2. This situation has already been

examined in the proof of Lemma 5.10. Here, the situation is even a bit better

than it was there. While we have already used at most 2l−6 variables during the

initial contractions, our smaller bound on m0 is more than enough to offset that

loss. Hence, all the contractions we did there can still be done here, and we get

the result.

Subcase B. Suppose m2 +m4 + · · ·+m2l−2 ≤ 2l − 4.

In particular m2 ≤ 2l − 4, hence from (23) we have m1 ≥ 2l · 3 + 9 and we can

apply Corollary 4.3 to these variables in order to get three B-primaries at level

2l − 1 and another B-primary at level at least 2l − 1. (We assume this level less

than 2l + 4, as otherwise we would be done by Remark 2). We now have six A-

primaries at level 2l−2, three B-primaries at level 2l−1, and a fourth B-primary

at level at least 2l − 1. We analyze two further subcases.

First assume m2l−1 ≥ 13. Applying Lemma 4.2 to these variables, we get a sec-

ondary variable at level 2l + 3. Then an application of Lemma 4.9 finishes the

proof of this case.

Now suppose m2l−1 ≤ 12. Then we have (see (14))

m1 + · · ·+m2l−2 ≥ ((2l)2l · 3 + 1)−m0 −m2l−1 ≥ 2l · (6l − 5)− 7. (24)
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By the hypothesis of Subcase B, we must have

m1 +m3 + · · ·+m2l−3 ≥ 2l · (6l − 6)− 3.

Subtracting the 2l ·3−3 (1)-secondaries we contracted at the beginning of Subcase

B from this amount, we still have

s1 + s3 + · · ·+ s2l−3 ≥ 2l · (6l − 9),

and we can then apply Corollary 4.3(b) to obtain s2l−1 ≥ 15 (remember that we

are assuming l ≥ 3) and then we proceed as we did when m2l−1 ≥ 13.

Case 2: 2l · 4− 3 ≤ m0 ≤ 2l ·
(
9
2

)
− 4.

We apply Corollary 4.3 to the variables at level 0 and get five primaries at level

2l − 2 and another primary at level at least 2l − 2. We have (see (14))

m1 +m2 ≥ 9 · 2l + 1−m0 ≥ 2l−1 · 9 + 5. (25)

We analyze two subcases.

Subcase A: Suppose m2 +m4 + · · ·+m2l−2 ≥ 2l · 2− 3.

We apply Corollary 4.3(b) and contract these variables, getting s2l−2 ≥ 3 and

s2l ≥ 1. So we have five (2l − 2)-primaries, three (2l − 2)-secondaries and one

(2l)-secondary. By Lemma 4.6 we can obtain two primaries at levels higher than

2l. If m2l+1 ≥ 1 or m2l+2 ≥ 1, together with these two primaries, we can use

Lemma 4.8 and get the result. If m2l+1 = m2l+2 = 0, we have (see (14))

m1 + · · ·+m2l ≥ (12l + 9)2l−1 + 5.

Extracting from this amount the 2l · 2 − 3 secondaries we already used in this

subcase, we still have s1 + · · ·+ s2l ≥ (12l+ 5)2l−1 + 8, and we can apply Corol-

lary 4.3 as before to either the variables at odd levels or those at even levels to

get either a (2l+1)-secondary or a (2l+2)-secondary. Then we proceed as before.

Subcase B: Suppose m2 +m4 + · · ·+m2l−2 ≤ 2l · 2− 4.

By (25) we have m1 ≥ 2l−1 ·5−3 and we can apply Corollary 4.3 to these variables

in order to construct two B-primaries at level (2l− 1) and another B-primary at

level at least 2l − 1. We analyze two further subcases.
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First assume m2l−1 ≥ 13. Applying Lemma 4.2(b) recursively to these variables

we get s2l+3 ≥ 1 and s2l−1 ≥ 3. As before, we may treat one of these (2l − 1)-

secondaries as a B-primary (We will only allow contractions of this variable with

B-primary variables). Thus we have five (2l− 2)-A-primaries, a sixth A-primary

at level at least 2l − 2, three (2l − 1)-B-primaries, another B-primary at level at

least 2l − 1, and one (2l + 3)-secondary. By either Lemma 4.9 or Lemma 4.10

(depending on the level of the sixth A-primary), we can either get a (2l + 3)-A-

primary or a (2l + 4)-B-primary and get the result.

Now assume m2l−1 ≤ 12. Then we have (see (14))

m1 + · · ·+m2l−2 ≥ 6l · 2l + 1−m0 −m2l−1 ≥ (12l − 9)2l−1 − 7. (26)

By the hypothesis of Subcase B we must have

m1 +m3 + · · ·+m2l−3 ≥ 2l−1 · (12l − 13)− 3.

Subtracting the 2l−1 · 5− 3 (1)-secondaries we have already used, we have

s1 + s3 + · · ·+ s2l−3 ≥ 2l−1 · (12l − 18)

and we can use Corollary 4.3 to get s2l−1 ≥ 15 (since we are assuming l ≥ 3) and

proceed as in the case m2l−1 ≥ 13.

Case 3: 2l
(
7
2

)
− 3 ≤ m0 ≤ 2l · 4− 4.

Applying Corollary 4.3 to the variables at level 0, we get four primaries at level

2l − 2 and another primary at level at least 2l − 2. We have (see (14))

m1 +m2 ≥ 9 · 2l + 1−m0 ≥ 2l · 5 + 5. (27)

We analyze two subcases.

Subcase A: Suppose m2 +m4 + · · ·+m2l−2 ≥ 2l · 2− 3.

We apply Corollary 4.3(b) and get three (2l−2)-secondaries and one (2l)-secondary.

These variables, together with the five primaries, can be contracted to two pri-

maries at levels higher than 2l by Lemma 4.6. Now, if m2l+1 ≥ 1 or m2l+2 ≥ 1

then we are done by Lemma 4.8. But if m2l+1 = m2l+2 = 0 we have (see (14))

m1 + · · ·+m2l ≥ (6l + 5)2l + 5.
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Of these variables, at least (6l + 3)2l + 8 variables are still unused, and we can

apply Corollary 4.3 as before to variables at levels of the same parity and get

either s2l+1 ≥ 1 or s2l+2 ≥ 1.

Subcase B: Suppose m2 +m4 + · · ·+m2l−2 ≤ 2l · 2− 4.

From (27) we have m1 ≥ 2l · 3 − 3. We apply Corollary 4.3 to these variables

and get three B-primaries at level 2l− 1 and a fourth B-primary at level at least

2l − 1. We analyze two further subcases.

First suppose m2l−1 ≥ 13. We apply Lemma 4.2(b) recursively to these variables

and get s2l−1 ≥ 3, s2l+1 ≥ 3, and s2l+3 ≥ 1. With three (2l− 1)-B-primaries, an-

other B-primary at level at least 2l−1, three (2l−1)-secondaries, and two (2l+1)-

secondaries, we apply Lemma 4.7 and get two B-primaries at levels higher than

2l+ 1 (which we assume less than 2l+ 4). These two B-primaries, together with

one (2l+3)-secondary, give us one B-primary at level at least 2l+4 by Lemma 4.8.

Now assume m2l−1 ≤ 12. We have (see (14))

m1 + · · ·+m2l−2 ≥ 6l · 2l + 1−m0 −m2l−1 ≥ (6l − 4)2l − 7. (28)

By the hypothesis of this subcase we must have

m1 +m3 + · · ·+m2l−3 ≥ 2l · (6l − 6)− 3.

Subtracting the 2l · 3− 3 (1)-secondaries we have already used from this number,

we still have

s1 + s3 + · · ·+ s2l−3 ≥ 2l · (6l − 9).

We can now use Corollary 4.3(b) to get s2l−1 ≥ 15 (we are assuming l ≥ 3) and

proceed as in the case m2l−1 ≥ 13 above.

Case 4: 2l · 3 + 1 ≤ m0 ≤ 2l ·
(
7
2

)
− 4.

We apply Corollary 4.3 to the variables at level 0 and get three primaries at level

(2l − 2) and another primary at level at least (2l − 2). We have (see (14))

m1 +m2 ≥ 9 · 2l + 1−m0 ≥ 2l−1 · 11 + 5. (29)

We analyze two subcases.
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Subcase A: Suppose m2 +m4 + · · ·+m2l−2 ≥ 2l−1 · 5− 3.

We apply Corollary 4.3(b) and obtain s2l−2 ≥ 3 and s2l ≥ 2. Then applying

Lemma 4.7 we get two primaries at levels higher than 2l. If m2l+1 ≥ 1 or m2l+2 ≥
1, we are done by Lemma 4.8. But if m2l+1 = m2l+2 = 0 we have (see (14))

m1 + · · ·+m2l ≥ (12l + 11)2l−1 + 5.

Of these variables, at least (12l+6)2l−1 +8 have not yet been used, and as before

we can apply Corollary 4.3 to variables at levels of the same parity and get either

s2l+1 ≥ 1 or s2l+2 ≥ 1, as needed.

Subcase B: Suppose m2 +m4 + · · ·+m2l−2 ≤ 2l−1 · 5− 4.

This implies m1 ≥ 2l · 3 + 9 (see (29)) and we can proceed exactly as in Case

3, Subcase B. Again, while the exact numbers are different, we have enough

secondary variables to make all the needed contractions. This completes the

proof of the proposition. �

Now the proof of Theorem 1 for K being any quadratic ramified extension

of Q2 follows directly from Propositions 5.1, 5.9, 5.11 and 5.12.
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AVENIDA SAIA VELHA, KM 6, BR-040, S/N
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